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a b s t r a c t 

Pattern recognition has made great progress under large amount of labeled data, while performs poorly 

on a very few examples obtained, named few-shot classification, where a classifier can identify new 

classes not encountered during training. In this paper, a simple framework named Prototype-Relation 

Network is presented for the few-shot classification. Moreover, a novel loss function compared with pro- 

totype networks is proposed which takes both inter-class and intra-class distance into account. During 

meta-learning, the model is optimized by end-to-end episodes, each of which is to imitate the test few- 

shot setting. The trained model is used to classify new classes by computing min distance between query 

images and the prototype of each class. Extensive experimental results demonstrate that our proposed 

meta-learning model is competitive and effective, which achieves the state-of-the-art performance on 

Omniglot and mini ImageNet datasets. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

In recent years, deep learning has made great progress in the

field of pattern recognition, such as object detection [1,2] , image

classification [3–14] , speech recognition [15 , 16] and machine trans-

lation [17] . Deep learning is a data-hungry technique, which needs

large amounts of labeled data [18 , 19] to train model parameters,

otherwise, over-fitting will occur [20] , which results in poor ro-

bustness and generalization performance of the model. However, it

is difficult to get labeled data in real life, and image annotation is

time-consuming and laborious. In contrast, humans have the abil-

ity to recognize objects where only a few examples of each class

are given with a high accuracy [21] . For example, children have no

problem generalizing the concept of ‘zebra’ from a single picture

in a book, or hearing its description as looking like a stripy horse

[22] , which is an innate meta-learning [23] or learning to learn

[24] ability of humans. Meta-learning performs transfer learning

from a pool of various classification problems generated from large

quantities of available labeled data, to new classification problem

from classes unseen at training time [25] . It is mainly to enable

the model to learn a knowledge transfer ability, and to identify the

sample classes that have not been encountered in the training pro-

cess, so as to achieve few-shot classification. 

Inspired by the deficiency of deep learning requiring large

amounts of data and the meta-learning ability of human beings,
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ew-shot learning [26–30] where the given classification problem

s assumed to contain only a handful of labeled examples per class

as attracted the interest of many researchers. Data augmenta-

ion [31–33] is one of the methods to reduce the over-fitting phe-

omenon in such a limited-data regime, but they do not solve it.

nother effective method is to use only a small number of samples

o learn a generalized representation of the data [34–37] , which

an be directly applied to the target data, i.e., transfer learning-

ased approaches. Currently, most exiting few-shot learning ap-

roaches learn a metric [20 , 22 , 38 –40] in the space constructed by

ata sources, and then classification is completed by comparing the

istance between images. 

Two recent metric-based approaches have made significant

rogress in few-shot learning. The Prototype Network [20] consid-

red that each class has a prototype in the embedding space. A

on-linear mapping of the input was learned into an embedding

pace by using a neural network, and a class’s prototype is the

ean of its support set in the embedding space. Lastly they trans-

ormed the classification problem into the nearest neighbor prob-

em. Instead of learning about a fixed metric, Sung et al. [22] de-

igned a two-branch Relation Network to learn a transferrable deep

etric: Embedding module and Relation module. Embedding mod-

le generated embeddings of the query and sample images, and

hese representations are compared by a Relation module through

 MSE loss function. The two approaches above utilized sampled

ini-batches called episode training strategy, as proposed in [39] ,

hich is an effective way to exploit the training set. Episode-based

https://doi.org/10.1016/j.neucom.2019.12.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.12.034&domain=pdf
mailto:zhoufengyu@sdu.edu.cn
https://doi.org/10.1016/j.neucom.2019.12.034


X. Liu, F. Zhou and J. Liu et al. / Neurocomputing 383 (2020) 224–234 225 

t  

t  

r

 

i  

t  

[  

c  

t  

w  

a  

a  

R  

p  

f  

a  

T  

t

 

b  

l  

m  

s

2

2

 

fi  

d  

t  

c  

b  

b  

p  

a  

o  

u  

[  

t  

t  

n  

c  

p  

t  

u  

o  

t  

e  

m  

s

2

 

n  

i  

t  

n  

b  

h  

e  

i  

p  

l  

f  

i  

p  

b  

t  

l  

t  

e  

w  

N  

d  

m  

A  

n  

i  

w  

r  

r  

a  

t  

f  

C  

w

3

3

 

s  

i  

s

 

e  

t  

E  

d  

o  

{  

s  

a  

s  

m  

T  

g  

a  

i  

e  

s

3

 

w  

i  

p  

t  

t

3

 

q  

n  

t  

e

raining is to mimic the few-shot learning setting during testing,

hus making the training problem more faithful to the test envi-

onment and improving generalization. 

Considering the problem of over-fitting [41 , 42] , we adopt the

dea of prototype. It is a metric-based method, which models

he distance between samples. However, the loss function that

20] adopted only considers the proximity of samples of the same

lass, but not the similarity of samples of different classes. To solve

he problems above, a novel loss function is proposed in this paper,

hich takes into account that samples of different classes are as far

way as possible to better measure the similarity between query

nd sample images. Specifically, we design a two-branch Prototype-

elation Network (PRN) that performs few-shot learning by com-

aring the distance between the prototype of query images and

ew-shot labeled sample images. First a Prototype module gener-

tes the prototypes of the meta-task constructed based on episode.

hen these prototypes are compared by a Relation module that de-

ermines if they are from matching categories or not. 

The rest of this paper is organized as follows. In Section 2 , we

riefly overview some related work on meta-learning and metric

earning. We present our proposed method in Section 3 . Experi-

ent results and discussions are shown in Section 4 . The conclu-

ion is in Section 5 with some discussion for the future works. 

. Related work 

.1. Meta-learning 

Few-shot learning is the application of meta learning in the

eld of supervised learning. Meta Learning (learning to learn)

ecomposes datasets into different meta tasks in the stage of

raining to learn the generalization ability of the model in the

ase of class changes. In the stage of testing, classification can

e completed without changing existing models in the face of

rand new classes. Ren et al. [25] advanced few-shot classification

aradigm towards a scenario where unlabeled examples were

lso available within each episode. It proposed novel extensions

f prototype network that were augmented with the ability to

se unlabeled example when producing prototype. Santoro et al.

43] trained a memory-augmented neural network to learn how

o store and retrieve memories to use for each classification

ask. Andrychowicz et al. [44] utilized a LSTM to train a neural

etwork. The difference is that they are interested in large-scale

lassification, whereas we are interested in the few-shot learning

roblem. Bertinetto et al. [45] trained a met-learner to map a

raining example to the weights of a neural network that was then

sed to classify future examples from this class, however, unlike

ur method the classifier network is directly produced rather

han being fine-tuned after multiple training steps. Maclaurin

t al. [46] tuned the hyper-parameters of gradient descent with

omentum by back-propagating through the chain of gradient

teps to optimize the validation performance. 

.2. Metric-learning 

The literature on metric learning is vast. Neighborhood Compo-

ents Analysis (NCA) [47] learned a Mahalanobis distance to max-

mize K-nearest-neighbor’s (KNN) leave-one-out accuracy in the

ransformed space. Weinberger et al. [48] proposed large margin

earest neighbor (LMNN) classification to optimize KNN accuracy

ut does so using a hinge loss that encouraged the local neighbor-

ood of a point to contain other points with the same label. Min

t al. [49] proposed a margin-based method DNet-KNN by utiliz-

ng a neural network to perform the embedding instead of a sim-

le linear transformation. Koch et al. [38] explored a method for

earning Siamese Neural Network with shared weights, and used the
eatures extracted from two branch networks to measure the sim-

larity of two inputs for few-shot learning. Vinyals et al. [39] em-

loyed the Matching Network framework which mapped a small la-

elled support set and an unlabeled example to its label, obviating

he need for fine-tuning to adapt to new class types. The most re-

ated methodologies to ours are the Prototype Network of [20] and

he Relation Network of [22] . These approaches focus on learning

mbeddings that transform the data such that it can be recognized

ith a fixed nearest-neighbor or linear classifier [22] . The Prototype

etwork believed that there was a prototype for each class. Un-

er the distribution of Bregman divergence, the prototype was the

ean of each dimension of support set in the embedding space.

nd then transformed the classification problem into the nearest

eighbor problem in the feature space. The idea of this prototype

s simple but can effectively prevents over-fitting. The Relation Net-

ork provided a learnable metric by training a neural network

ather than a fixed metric. And it thought that it is more like a

egression problem, using MSE instead of cross-entropy loss. We

dopt the idea of [20] , and propose a novel loss function, which

akes into account the distance between heterogeneous samples as

ar as possible, instead of only considering homogeneous samples.

ompared with [22] , we benefit from an episodic training strategy

ith end-to-end manner from scratch. 

. Methodology 

.1. Problem definition 

In the few-shot classification task, there are generally three data

ets: training set, support set and testing set. The training set has

ts own label space that is disjoint with support/testing set. The

upport set and testing set have the same label space. 

An effective way to exploit the training set is to follow an

pisode paradigm, as proposed in [39] , which is to simulate the

ypes of few-shot problems that will be encountered at test time.

very episode of training is formed in this way: C class is ran-

omly selected from the training set, K labeled samples of each

f the C class are randomly selected to form the sample set S =
 ( x i , y i ) } m 

i =1 
( m = C × K ) , then q labeled samples of the remaining

amples of each of the C class are randomly selected to serve

s query set Q = { ( x j , y j ) } n j=1 
( n = C × q ) . This is called C -way K -

hot few-shot classification problem. This sample/query set is to

imic the support/test set that will be encountered at test time.

he model obtained by this training strategy optimization has good

eneralization performance on the new class samples. Due to this

nalogy, training under this paradigm is often referred to as learn-

ng to learn or meta-learning. In our work, we adopt such an

pisode-based training strategy and consider one-shot and five-

hot settings. 

.2. Network architecture 

In this paper, we first put forward a Prototype-Relation Net-

ork similar to Relation Network (RN) [22] architecture, as shown

n Fig. 1 . It consists of two modules: Prototype module generates

rototypes of each class samples, and Relation module calculates

he relationship between each samples in query set and each pro-

otype of each class. 

.2.1. Prototype module 

Firstly, samples x i in the sample set S and samples x j in the

uery set Q constructed by episode-based are sent into Embedding

etwork, and their feature vectors f ( x i ) and f ( x j ) will be obtained

hrough Embedding network. Then we calculate the prototype of

ach class samples in the sample set. 
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Fig. 1. Prototype Relation Networks Architecture. 

Fig. 2. Embedding network architecture of prototype relation. 
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3.2.2. Relation module 

Calculate the Euclidean distance from each sample in the query

set Q to each class prototype. During the training process, model

parameters are optimized by minimizing the distance between

same class samples and maximizing the distance between differ-

ent class samples. In the test process, the classification problem is

transformed into the nearest neighbor problem, and the prototype

category which is the nearest to the test sample is output. 

3.2.3. Embedding network 

In order to make a fair comparison, the few-shot classifica-

tion model in this paper also utilizes the form of four convolution

blocks adopted in [20 , 22 , 39] , as shown in Fig. 2 . Embedding net-

work consists of four convolution blocks and a Flatten layer. More

concretely, each convolutional block contains a 64 filter 3 × 3 con-
olution, a batch normalization, a Relu activation function and a

 × 2 max_pool layer. The output size of Flatten layer is n = 64 . 

.3. Model 

Firstly, we can get an n -dimensional representation f ( x i ) of each

ample x i in the sample set S . Each prototype is the mean vector of

he embedded support points belonging to its class. In the C -way

 -shot problem, the prototype p k of class k follows the following

ules: 

p k = 

{
f ( x i ) , K = 1 

1 
N s 

∑ 

( x i , y i ) ∈ S k f ( x i ) , K > 1 

(1)

here N s is the number of support examples per class. 

Secondly, calculate the distance d ( f ( x j ), p k ) from each sample x j 
n the query set Q to each class prototype p k . In this paper, the Eu-

lidean distance is adopted. Snell et al. [20] proved that computing

he class prototype as the mean of embedded support points is

ore naturally suited to Euclidean distances since cosine distance

s not a Bregman divergence. 

Thirdly, calculate the probability of each sample x j in the query

et Q to each class prototypes. The closer the sample is to the pro-

otype, the more likely it is to belong to this class; otherwise, the

ess likely it is to belong to this class. The probability of the sample

f the class k to the prototype of the class k is: 

p(y = k | p k ) = 

exp (−d( f ( x q ) , p k )) ∑ N c 
k ′ =1 

exp (−d( f ( x q ) , p k ′ )) 
(2)

here N c is the number of class per episode. 

Then, define the loss of the sample of the class k to the proto-

ype of the class k 

os s k = − log p(y = k | p k ) − λ
N c ∑ 

k ′ =1 ,k ′ � = k 
log [ 1 − p(y = k | p k ′ ) ] 

= − log 
exp (−d( f ( x q ) , p k )) ∑ N c 

k ′ =1 
exp (−d( f ( x q ) , p k ′ )) 

−λ
N c ∑ 

k ′ =1 ,k ′ � = k 
log 

[ 

1 − exp (−d( f ( x q ) , p k ′ )) ∑ N c 
k ′ =1 ,k ′ � = k exp (−d( f ( x q ) , p k ′ )) 

] 

(3)

here λ is the regularization coefficient. 
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Algorithm 1 

Episode formation and model training for Prototype-Relation Network. D k repre- 

sents all samples in the class k . 

Input: Training set D = ( x i , y i ) 
N 
i =1 

y i ∈ {1, ���, K }. 

Output: The loss L for a randomly generated training episode. 

1: Select N c randomly from K classes to construct sample set S and query set Q . 

2: for k in {1, ���, N c } do 

3: Select N s randomly from D k to constitute S k 
4: Select N q randomly from ( D k − S k ) to constitute Q k 
5: S = S + S k 
6: Q = Q + Q k 
7: p k = 

1 
N s 

∑ 

( x i , y i ) ∈ S k 
f ( x i ) 

8: end for 

9: L = 0 

10: for k in {1, ���, N c } do 

11: for ( x j , y j ) in Q k do 

12: Optimize (SGD, Adam) 

13: end for 

14: end for 

L

w  

 

o  

l  

a  

{  

K  

a  

i  

s  

P  

i

4

 

m  

s  

b  

A  

e

4

4

 

(  

s  

e  

b  

2  

m  

a  

t

4

 

s  

r  

o  

c  

a  

o  

n  

a  

w  

i  

r  

i  

λ  

w  

O

 

s  

5  

C  

g  

1  

n  

u  

t  

s

 

w  

t  

w  

T  

w  

w  

t

4

 

s  

o  

t  

a  

d  

5  

o  

t

4

4

 

[  

6  

p  

c  

A

4

 

b  

d  

n  

a  

w  

[  

t  

d  

m  

a  

d

 

g  

1  

m  
Then, calculate the loss of all samples in the query set Q . 

oss = 

1 

N c 

N c ∑ 

k =1 

Los s k (4) 

here N q is the number of query images of each class per episode.

At last, SGD optimizer is used to minimize the loss and

ptimize the model parameters. The training process also uti-

izes episode-based strategy, which is the formation sample set

nd query set. Suppose there is a training set D = ( x i , y i ) 
N 
i =1 

y i ∈
 1 , · · · , K } , where N is the number of examples in the training set,

 is the number of classes in the training set. Training episodes

re formed by randomly selecting N c ≤ K classes from the train-

ng set, then choosing N s samples within each class to serve as the

upport set and N q samples of the remainder to act as query set.

seudocode that forms an episode and training models is provided

n Algorithm 1 . 

. Experiments 

For few-shot learning, we evaluate the performance of our

odel on two datasets: Omniglot [50] and the mini ImageNet ver-

ion of ILSVRC-2012 [51] . All the experiments are implemented

ased on Tensorflow. All of our model were trained via SGD with

dam [52] using an initial learning rate of 10 −3 . All our model are

nd-to-end trained from scratch with no additional dataset. 

.1. Omniglot few-shot classification 

.1.1. Dataset 

Omniglot [50] is a dataset of 1623 handwritten characters

classes) from 50 different alphabets. There are 20 examples as-

ociated with each class, where each example is drawn by differ-

nt people. We follow the few-shot classification setting proposed

y Vinyals et al. [39] , in which the grayscale images are resized to

8 × 28 pixels and rotations in multiples of 90 ◦ are applied to aug-

enting the character classes, yielding 6492 classes in total. These

re split into 4112 training classes, 688 validation classes and 1692

esting classes. 

.1.2. The affection of regularization coefficient 

Compared to [20] , the loss function proposed in this paper con-

iders both inter-class distance and intra-class distance, that is, the

egularization term is introduced. In order to prove the influence

f different λ values on the robustness of the model, the following

omparative experiments under Omniglot dataset are conducted. In

ll experiments, no matter train and test, if the shot = 1, the number

f query samples per class is 19, i.e. query = 19; if the shot = 5, the
umber of query samples per class is 15, i.e. query = 15. Tables 1

nd 2 show the accuracy of different λ values under different C -

ay K -shot settings. λ = 0 is the baseline, i.e., the loss function

n [20] is adopted. From Tables 1 and 2 , we found that the accu-

acy of test set is improved to a certain extent after introducing

ntra-class distance loss. Except for individual experiments, when

= 0.05, the model can achieve the best results. Therefore, 0.05

as selected as the best regularization coefficient in this paper on

mniglot dataset. 

Furthermore, aiming at the few-shot classification of C -way K -

hot, we define it as C train and K train ,C test and K test , such as “Train:

-way 1-shot, Test: 5-way 1-shot” is defined as “C train = 5 K train = 1,

 test = 5, K test = 1 ′′ . Fig. 3 (a)–(p) indicate the detailed boxplot dia-

ram for the distribution of the detailed classification results over

0 runs for each episode setting under different λ values on Om-

iglot dataset. As indicated in Fig. 3 (a)–(p), the proposed method

nder λ = 0.05 achieves superior performance and outperforms all

he other λ values for almost episode setting significantly except

etting (d) and setting (m). 

In addition, we record the accuracy changes on the support set

hen λ = 0 and λ = 0.05 under different settings. In this paper,

wo groups of settings are randomly selected: setting1 is “Train: 5-

ay 1-shot, Test: 20-way 1-shot”, setting2 is “Train: 5-way 5-shot,

est: 20-way 5-shot”. From Fig. 4 , it is observed that compared

ith λ = 0, the model at λ = 0.05 shows significant advantages,

hich can achieve faster convergence and higher accuracy on the

est set. 

.1.3. Comparison with baseline models 

In this section, we compare our approach with 10 baseline re-

ults on Omniglot dataset. We computed classification accuracy for

ur models averaged over 10 0 0 randomly generated episode from

he test set. Table 3 presents the results of our proposed method

nd baseline models. We achieve state-of-the-art performance un-

er all experiments setting with higher averaged accuracies, except

-way 1-shot where our model is 99.27% and 20-way 1-shot where

ur model is 95.97%, the best results are 99.6% and 97.6%, respec-

ively. 

.2. mini ImageNet few-shot classification 

.2.1. Dataset 

The mini ImageNet dataset, originally proposed by Vinyals et al.

39] is a modified version of the ILSVRC-12 dataset [51] , in which

00 images for each of 100 classes were randomly chosen to be

art of the dataset. The splits used by Vinyals et al. [39] use 64

lasses for training, 16 classes for validation and 20 classes for test.

ll images are of size 84 × 84 pixels. 

.2.2. The affection of regularization coefficient 

In order to prove the influence of different λ values on the ro-

ustness of the model, the following comparative experiments un-

er mini ImageNet dataset are conducted. In all experiments, the

umber of query samples per class is 15, i.e. query = 15. Tables 4

nd 5 show the accuracy of different λ values under different C-

ay K-shot settings. λ = 0 is the baseline, i.e., the loss function in

20] is adopted. From Tables 4 and 5 , we found that the accuracy of

est set is improved to a certain extent after introducing intra-class

istance loss. Except for individual experiments, when λ = 0.1, the

odel can achieve the best results. Therefore, λ = 0.1 was selected

s the best regularization coefficient in this paper on mini ImageNet

ataset. 

Furthermore, Fig. 5 (a)–(h) indicate the detailed boxplot dia-

ram for the distribution of the detailed classification results over

0 runs for each episode setting under different λ values on

ini ImageNet dataset. As indicated in Fig. 5 (a)–(h), the proposed
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Fig. 3. Boxplot diagrams for the distribution of classification results for each episode setting under different λ values over 10 runs on Omniglot dataset. 
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Fig. 3. Continued 
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Table 1 

The experimental results of different λ values under Omniglot dataset. 

λ Train: 5-way 1-shot Acc. (%) Train: 5-way 5-shot Acc. (%) 

5-way 20-way 5-way 20-way 

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 

λ = 0 97.02 99.12 91.43 97.25 96.75 99.10 89.55 97.67 

λ = 0.05 97.68 99.64 92.33 97.81 97.30 99.42 90.76 97.99 

λ = 0.1 97.63 99.4 91.37 97.85 97.12 99.35 90.19 97.61 

λ = 0.15 97.43 99.43 91.10 97.63 97.04 99.27 89.75 97.54 

λ = 0.2 97.29 99.30 90.74 97.61 96.80 99.27 89.50 97.39 

λ = 0.25 97.16 99.39 90.48 97.47 96.53 99.28 88.81 97.24 

λ = 0.3 97.01 99.28 90.17 97.36 96.43 99.19 88.27 97.27 

λ = 0.4 96.75 99.20 89.41 97.21 95.98 99.16 87.64 97.01 

λ = 0.5 96.57 99.14 88.63 96.89 95.63 99.05 87.00 96.76 

Table 2 

The experimental results of different λ values under Omniglot dataset. 

λ Train: 20-way 1-shot Acc. (%) Train: 20-way 5-shot Acc. (%) 

5-way 20-way 5-way 20-way 

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 

λ = 0 98.34 99.51 95.35 98.43 98.12 99.51 93.72 98.69 

λ = 0.05 99.27 99.64 95.97 98.82 97.86 99.91 94.19 99.32 

λ = 0.1 98.67 99.59 95.55 98.48 97.51 99.54 93.12 98.68 

λ = 0.15 97.99 99.57 94.82 98.43 97.43 99.52 92.79 98.57 

λ = 0.2 97.91 99.54 93.97 98.35 97.18 99.48 92.41 98.52 

λ = 0.25 97.85 99.51 93.55 98.29 97.11 99.45 92.24 98.41 

λ = 0.3 97.76 99.50 93.47 98.20 96.95 99.47 92.05 98.35 

λ = 0.4 97.50 99.45 92.77 98.10 96.81 99.43 91.68 97.97 

λ = 0.5 97.31 99.42 92.65 98.02 96.70 99.37 91.32 97.91 

Fig. 4. The accuracy changes on the support set when λ = 0 and λ = 0.05 under different settings. Setting1 is “Train: 5-way 1-shot, Test: 20-way 1-shot”. Setting2 is “Train: 

5-way 5-shot, Test: 20-way 5-shot”. 

Table 3 

Few-shot classification on Omniglot dataset. All accuracy results are averaged over 10 0 0 test episodes and with 95% confidence intervals. 

The best performance method is highlighted, along with any others whose confidence intervals overlap. ‘-’ Results is not reported. 

Model 5-way Acc. 20-way Acc. 

1-shot 5-shot 1-shot 5-shot 

MANN [53] 82.8% 94.9% – –

CONVOLUTIONAL SIAMESE NETS [38] 96.7% 98.4% 88.0% 96.5% 

MATCHING NETS [39] 98.1% 98.9% 93.8% 98.5% 

SIAMESE NETS WITH MEMORY [54] 98.4% 99.6% 95.0% 98.6% 

NEURAL STATISTICIAN [55] 98.1% 99.5% 93.2% 98.1% 

META NETS [56] 98.95% – 97.00% –

GNN [59] 99.2% 99.7% 97.4% 99.0% 

IMP [60] 98.4 ± 0.3% 99.5 ± 0.1% 95.0 ± 0.1% 98.6 ± 0.1% 

RELATION NET [22] 99.6 ± 0.2% 99.8 ± 0.1% 97.6 ± 0.2% 99.1 ± 0.1% 

PROTOTYPE NETS [20] 98.7% 99.6% 95.4% 98.8% 

PROTOTYPE-RELATION NETS 99.27 ± 0.23% 99.91 ± 0.06% 95.97 ± 0.56% 99.32 ± 0.13% 
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Fig. 5. Boxplot diagrams for the distribution of classification results for each episode setting under different λ values over 10 runs on mini ImageNet dataset. 
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Fig. 6. The accuracy changes on the support set when λ = 0 and λ = 0.1 under different settings. Setting1 is “Train: 5-way 1-shot, Test: 20-way 1-shot”. Setting2 is “Train: 

5-way 5-shot, Test: 20-way 5-shot”. 

Table 4 

The experimental results of different λ values under mini ImageNet dataset. 

λ Train: 5-way 1-shot Acc. (%) Train: 5-way 5-shot Acc. (%) 

5-way 1-shot 5way 5-shot 5-way 1-shot 5-way 5-shot 

λ = 0 46.52 59.73 44.51 65.71 

λ = 0.05 46.73 59.91 44.61 66.19 

λ = 0.1 46.74 60.19 44.53 66.59 

λ = 0.15 46.64 60.08 44.47 66.42 

λ = 0.2 46.60 59.94 44.41 66.38 

λ = 0.25 46.56 59.89 44.36 66.21 

λ = 0.3 46.52 59.76 44.29 66.10 

λ = 0.4 46.51 59.68 44.27 66.01 

λ = 0.5 46.48 58.61 44.20 65.78 

Table 5 

The experimental results of different λ values under mini ImageNet dataset. 

λ Train: 20-way 1-shot Acc. (%) Train: 20-way 5-shot Acc. (%) 

5-way 1-shot 5way 5-shot 5-way 1-shot 5-way 5-shot 

λ = 0 49.09 62.56 43.49 68.13 

λ = 0.05 49.36 62.69 43.62 68.34 

λ = 0.1 49.54 62.72 43.68 68.31 

λ = 0.15 49.38 62.68 43.61 68.24 

λ = 0.2 49.27 62.59 43.59 68.22 

λ = 0.25 49.15 62.57 43.52 68.19 

λ = 0.3 49.09 62.51 43.48 68.08 

λ = 0.4 49.01 62.49 43.42 68.02 

λ = 0.5 48.94 62.43 43.39 67.99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Few-shot classification on mini ImageNet dataset. All accuracy results are averaged 

over 10 0 0 test episodes and with 95% confidence intervals. The best performance 

method is highlighted, along with any others whose confidence intervals overlap. 

Model 5-way Acc. 

1-shot 5-shot 

BASELINE NEAREST NEIGHBORS 28.86 ± 0.54% 49.79 ± 0.79% 

MATCHING NETS [39] 43.40 ± 0.78% 51.09 ± 0.71% 

MATCHING NETS FCE [39] 43.56 ± 0.84% 55.31 ± 0.73% 

META-LEARNING LSTM [57] 43.44 ± 0.77% 60.60 ± 0.71% 

META NETS [56] 49.21 ± 0.96% –

MAML [58] 48.70 ± 1.84% 63.11 ± 0.92% 

IMP [60] 49.6 ± 0.8% 68.1 ± 0.8% 

GNN [59] 50.33 ± 0.36% 66.41 ± 0.63% 

RELATION NET [22] 50.44 ± 0.82% 65.32 ± 0.70% 

PROTOTYPICAL NETS [20] 49.42 ± 0.78% 68.20 ± 0.66% 

PROTOTYPE-RELATION NETS 49.54 ± 0.09% 68.34 ± 0.06% 
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method under λ = 0.1 achieves superior performance and outper-

forms all the other λ values for almost episode setting significantly

except setting (c) and setting (h). 

In addition, we record the accuracy changes on the support set

when λ = 0 and λ = 0.1 under different settings. In this paper,

two groups of settings are randomly selected: setting1 is “Train: 5-

way 1-shot, Test: 5-way 5-shot”, setting2 is “Train: 20-way 1-shot,

Test: 5-way 5-shot”. From Fig. 6 , we observed that compared with

λ = 0, the model at λ = 0.1 shows faster convergence and higher

accuracy on the test set. 

4.2.3. Comparison with baseline models 

In this section, we compare our approach with 7 baseline re-

sults on mini ImageNet dataset. We computed classification ac-

curacy for our models averaged over 10 0 0 randomly generated

episode from the test set. Table 6 presents the results of our

proposed method and baseline models. We achieved state-of-the-

art performance under all experiments setting with higher aver-
ged accuracies and lower standard deviations, except 5-way 1-

hot where our model is 0.9% lower in accuracy than [22] . 

.3. Relation of episode between train and test 

We also compared Prototype-Relation Networks trained with

 different number of classes per episode (“C -way”) and a dif-

erent number of points per class (“K -shot”) on Omniglot and

ini ImageNet datasets: 5-way vs. 20-way and 1-shot vs. 5-shot,

.e. the relation of C train and C test , K train and K test . We found that

he construction of training episodes is an important consideration

n order to achieve better results for few-shot classification. 

From Table 7 , we note that when K test is larger than K train un-

er the same C -way, i.e. C test = C train , the model performance is in-

reasing. For example, when C train = C test = 5, K train = 1, the accuracy

f K test = 5 (99.64%) is superior to the accuracy of K test = 1 (97.68%)

n Omniglot dataset and the accuracy of K test = 5 (60.19%) is supe-

ior to the accuracy of K test = 1 (46.74%) on mini ImageNet dataset.

nother example, when C train = C test = 20, K train = 1, the accuracy of

 test = 5 (98.82%) is superior to the accuracy of K test = 1 (95.97%)

n Omniglot dataset. In addition, we have found that it can be

reatly beneficial to train with a higher C train than C test under the

ame K -shot. For example, when K train = K test = 1, C test = 5, the accu-

acy of C train = 20 (99.27%) is better than the accuracy of C train = 5

97.68%) on Omniglot dataset and when K train = K test = 5, C test = 5,

he accuracy of C train = 20 (68.31%) is better than the accuracy of

 train = 5 (66.59%) on mini ImageNet dataset, i.e. 20-way achieves

igher accuracy than 5-way. It inferred that the model achieves
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Table 7 

Comparison of “way” of train and test, “shot” of train and test on Omniglot and mini ImageNet under 5-way vs. 20-way and 1-shot vs. 5- 

shot. Classification accuracy is averaged over 10 0 0 randomly generated episodes from the test set and 95% confidence intervals are shown. 

Dist. Dataset Train Episodes C test = 5 Acc. C test = 20 Acc. 

C train K train Query K test = 1 K test = 5 K test = 1 K test = 5 

Euclid. Omniglot 5 1 19 97.68% 99.64% 92.33% 97.81% 

5 5 15 97.30% 99.42% 90.76% 97.99% 

20 1 19 99.27% 99.64% 95.97% 98.82% 

20 5 15 97.86% 99.91% 94.10% 99.32% 

mini ImageNet 5 1 15 46.74% 60.19% – –

5 5 15 44.53% 66.59% – –

20 1 15 49.54% 62.72% – –

20 5 15 43.68% 68.31% – –
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etter results on harder training tasks because more classes allow

he model to have better generalization performance and it forces

he model to make more fine-grained decisions in the embedding

pace. 

. Conclusion 

In this paper, we proposed a simple network architecture

amed Prototype-Relation Network and a novel loss function

hich takes into account inter-class and intra-class distance for

ew-shot classification. The idea of meta-learning is adopted and

he meta-task of each training is constructed based on episode

aradigm. The approach is far simpler and more efficient than

ecent few-shot meta-learning approaches. We show that when

he regularization coefficient λ = 0.05 for Omniglot dataset and

= 0.1 for mini ImageNet, the model achieves the best perfor-

ance under different C -way K -shot, which produces the state-of-

he-art results. We further found that it is usual to train with a

igher “way” and to test with a smaller “shot”. And it is demon-

trated that the construction of training episodes is an important

onsideration in order to achieve better results. 

For future work, we would like to extend our method from su-

ervised to semi-supervised learning to take advantage of the large

mount of unlabeled data. In addition, we also would like to in-

estigate the application of few-shot learning in facial expression

ecognition. 
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