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Unsupervised Domain Adaptation via Class
Aggregation for Text Recognition

Xiao-Qian Liu , Xue-Ying Ding , Xin Luo , and Xin-Shun Xu , Senior Member, IEEE

Abstract— Cross-domain text recognition is a very challenging
task due to the domain drift problem. One solution is aligning
feature distributions between domains through Unsupervised
Domain Adaptation (UDA). All existing methods perform feature
alignment based on the whole image or semantic character
features. However, visual character features without contextual
semantics also contain much valuable information, e.g., stroke
features of individual characters, which also benefits domain
transfer. To this end, we propose a dual intra-Class Aggregation
based unsupervised Domain Adaptation method (CADA) for text
recognition, which aligns both visual and semantic character
feature distributions. To our knowledge, CADA is the first to
consider visual character features without contextual semantics
in cross-domain text recognition tasks. Accordingly, a Single-
head Self-Attention (SSA) mechanism is introduced for extracting
visual character features. Thereafter, a dual intra-class aggrega-
tion strategy is designed, which performs class aggregations in
both visual and semantic spaces. We test the proposed method
on widely-used datasets by combining it with representative text
recognition models with various decoding methods. Extensive
experimental results demonstrate the superiority and generality.
Moreover, there is no additional inference time introduced
compared to the baselines.

Index Terms— Unsupervised learning, domain adaptation, text
recognition, class aggregation.

I. INTRODUCTION

CURRENTLY, deep learning based text recognition meth-
ods have made great progress [1], [2], [3]. Although text

recognition in single-domain can achieve good performance
[4], [5], [6], it is still much challenging in cross-domain
due to domain gaps, such as variations in strokes, fluency,
appearance, and background. Consequently, a model may
perform well in a source domain but poorly in a target domain,
known as domain drift problem [7]. For example, as shown in
Fig. 1, there are domain discrepancies among synthetic text,
real scene text, and handwritten text, which is a typical domain
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Fig. 1. Multiple domain samples. They have different low-level feature, such
as RGB feature below each image, and the same high-level feature, such as
both for the text recognition task.

drift phenomenon. Generally, these domains have different
low-level feature distributions, such as color and pixel features,
and similar high-level feature distributions, such as category
and target type.

One way to solve the domain drift is to fine-tune a pre-
trained model with labeled target data. For example, Ayan
et al. [8] proposed a unified model for scene text and
handwriting text recognition based on knowledge distillation,
which is a supervised domain adaptation method. However,
in many scenarios, less labeled data is available in some
target domains; moreover, image annotation is time-consuming
and labor-intensive. Therefore, more recently, unsupervised
domain adaptation has been proposed, which transfers knowl-
edge learned in source domains to unlabeled target domains to
alleviate domain drift. For instance, SMILE [9], a UDA-based
method, optimizes source data by supervised cross-entropy and
target data by unsupervised entropy minimization, respectively.
However, it ignores the interaction of source and target
domains, and its performance decreases when the two domains
differ significantly.

Although several UDA-based methods have been proposed
for text recognition, they ignore that text recognition is a
sequence recognition task. The premise of correct sequence
recognition is the accurate recognition of each character.
To address this, ASSDA [10] is proposed, considering global
and local-level features via adversarial learning. However,
it only extracts contextual semantic local-level character fea-
tures. It neglects visual character features, such as stroke and
character structure, which contain valuable appearance infor-
mation and are beneficial to accurately recognizing individual
characters.

1051-8215 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 18,2023 at 03:01:14 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-2187-8598
https://orcid.org/0000-0002-2578-2956
https://orcid.org/0000-0002-6901-5476
https://orcid.org/0000-0001-9972-7370


5618 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 10, OCTOBER 2023

To address these issues mentioned above, we propose a
novel intra-Class Aggregation based unsupervised Domain
Adaptation method named CADA, which performs dual
intra-class aggregation of character features in both visual
space and semantic space. Specifically, it first adopts
cross-entropy to optimize word-level labeled data and entropy
minimization to optimize unlabeled target data. Then, a single-
head self-attention module is introduced to extract visual
character features without contextual semantics in visual
space. Correspondingly, sequence-to-sequence cross attention
is employed in semantic space to extract semantic character
features. Finally, based on the visual character features and
semantic character features, a dual intra-class aggregation
is conducted, where similar character features from source
and target domains are pulled close within classes. In this
way, it can extract domain-invariant fine-grained features, thus
alleviating the domain drift problem. It is tested on several
representative text recognition models with various decoding
ways. Extensive domain adaptation experiments demonstrate
that CADA achieves state-of-the-art average results on bench-
mark datasets and can achieve competitive results compared
to a supervised finetune model.

To summarize, our contributions are as follows:
• We propose an unsupervised Domain Adaptation method

based on intra-Class Aggregation for text recognition,
alleviating the domain drift problem.

• The visual character features without contextual seman-
tics are first exploited in the UDA-based text recognition
task. Based on this, a single-head self-attention module
is introduced to extract visual character features.

• A dual intra-class aggregation strategy is designed based
on a center loss, which performs visual and semantic
space class aggregation, respectively.

• Extensive experiments are conducted on widely-used
benchmark datasets. The results demonstrate the superi-
ority and generality of CADA over some state-of-the-art
methods.

II. RELATED WORKS

This section reviews the literature on deep learning based
text recognition, unsupervised domain adaptation, and domain
adaptation for text recognition.

A. Deep Learning Based Text Recognition

In the past decade, encode-decode based deep learning
models have made much progress on text recognition [11],
[12]. Some adopt the connectionist temporal classification
(CTC) [13] layer, making end-to-end sequence discriminative
learning possible. For example, Shi et al. [14] proposed the
CRNN framework based on CTC loss for scene text recog-
nition. Subsequently, the CTC-based methods are gradually
replaced by attention-based methods [7]. For example, Baek
et al. [12] proposed a four-stage model, namely TRBA, and
experimentally demonstrated that the attention-based decoding
method was superior to the CTC-based decoding method,
but was less efficient than the latter due to the autoregres-
sive decoding. Based on the joint modeling of visual and

semantic features, Bhunia et al. [15] proposed a multi-stage
and multi-scale 2D-attention model. However, it is also an
attention-based decoding model, making it less computation-
ally efficient. Considering the speed of CTC-based decoding,
Hu et al. [16] proposed a GTC model. In the training process,
the attention-based decoding branch is utilized to guide the
training of the CTC-based decoding branch, but only the
CTC branch is used in the inference stage. More recently,
to address the parallel limitation of attention-based methods,
many transformer-based recognition models are proposed [17],
[18]. For instance, MASTER [19] is a CNN-transformer based
model which extracts global information and features of dif-
ferent spaces. In addition, a novel memory caching mechanism
eliminates unnecessary calculations and saves intermediate
calculation results, thus improving inference speed. Fang et al.
[17] innovatively proposed a language-based model, which
optimizes a visual model and a language model separately by
blocking the transmission of the gradient flow. The methods
mentioned above have achieved competitive results; however,
they mainly focus on single-domain text recognition or only
leverage global features while ignoring local features.

B. Unsupervised Domain Adaptation

Unsupervised domain adaptation has gained increasing
attention in recent several years [20], [21], which aims to
obtain a good performance model on unlabeled target data
by mitigating the domain drift. Existing UDA-based methods
can be divided into three categories. The first one is statistics-
based, which maps data from source and target domains into a
shared space where domain alignment is achieved by minimiz-
ing measurements, e.g., Maximum Mean Discrepancy (MMD)
[22], correlation alignment distance (CORAL) [23], [24]. The
second category is adversarial learning based methods [25],
[26]. For example, Zhang et al. [27] proposed a collaborative
and adversarial network CAN, where an adversarial training
scheme is used to learn both discriminative low-level rep-
resentations and high-level representations. Coupled GANs
[26] directly applies GANs to domain adaptation to explicitly
reduce the domain drift by learning a joint distribution of
multi-domain images. The third category is self-training based
methods, which use pseudo-labeled target samples to retrain
the model through specific training strategies. For instance,
Huang et al. [28] constructed a categorical domain-mixed
dictionary from the labels of the source domain and the
pseudo labels of the target domain and proposed a novel
Category Contrast technique (CaCo) that introduces semantic
priors on top of instance discrimination for visual UDA
tasks. Zou et al. [29] introduced a class-balanced self-training
UDA for semantic segmentation. Different from the above
methods based on adversarial learning or self-training, our
CADA aligns fine-grained category features from source and
target domains in embedding space to learn domain-invariant
features.

C. Domain Adaptation for Text Recognition

Due to the inter-domain variability, text recognition models
trained on a source domain, e.g., large-scale synthetic text,
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Fig. 2. The pipline of CADA. It consists of a ResNet to extract global visual features V , a BiLSTM to capture global semantic features F , a Decode
Prediction module that autoregressively predicts sequences based on an RNN decoder, a visual space class aggregation module, and a semantic space class
aggregation module. Thereinto, the intra-class aggregation in visual and semantic space constitutes the dual intra-class aggregation strategy. In the Decode
Prediction module, the source data and target data are optimized using supervised cross-entropy Lcrs_ent and unsupervised entropy minimization Lent ,
respectively.

can hardly be applied directly to a target domain, e.g., real
scene text, or handwriting text. Meanwhile, in some scenarios,
a target domain has insufficient labeled data. To address
this problem, unsupervised domain adaptation methods for
text recognition have attracted much attention recently. These
methods can be roughly divided into two categories, i.e., writ-
ing style adaptation and scene adaptation. Thereinto, the
former treats an author as a domain that adapts writing styles
among multiple authors [30], [31]. For example, MetaHTR
[31] is a writer-adapted model via a single gradient step update
during inference, which exploits additional new-writer text
via a novel meta-learning framework. In contrast, the latter
treats a scene as a domain that performs multiple scenes
adaptation, typical methods including GA-DAN [32], ASSDA
[10], and SMILE [9]. GA-DAN introduces a geometry-aware
domain adaptation network to convert synthetic text images
to real scene text images and then uses the converted text
images to train the model for target domain recognition.
However, it is a two-stage model instead of an end-to-end
unified framework. ASSDA is an improved version of SSDAN
[33], which uses adversarial learning to extract global and
local character features, respectively, and realizes the domain
adaptation of the synthetic text to real scene text. SMILE
performs sequence-to-sequence unsupervised domain adapta-
tion via entropy minimization for text recognition. However,
it optimizes the source and target domains separately. More
specifically, the source domain is optimized by supervised
cross-entropy, and the target domain is optimized by unsu-
pervised entropy minimization. In other words, it ignores the
interaction between the source and target domains; therefore,
its performance on the target domain degrades when the
distributions of source and target domains differ significantly.

Unlike these UDA-based methods, our method starts from the
task itself, where the correct sequence recognition depends on
the accurate recognition of each character. For this purpose,
CADA extracts visual and semantic character features and
conducts the alignment interaction between source and target
domains in visual space and semantic space, respectively.

III. OUR METHOD

A. Problem Definition

Our work aims to achieve domain adaptation for sequence-
to-sequence text recognition in cross-domains. In other words,
the labeled source data and unlabeled target data are used
to learn domain-invariant feature representations so that the
model can perform well in target domains. Formally, given N s

word-level annotated source samples DS
= {(xi , yi )}

N s

i=1 and
N t unlabeled target samples DT

= {(x j )}
N t

j=1, where xi or x j
is an image containing a text sequence, and yi is a word-level
label yi = {yi,1, yi,2, · · · , yi,L}, where L is the actual length
of the text sequence. The task aims to learn a model on DS

and DT that performs well on DT .

B. Overview

The full framework of CADA is shown in Fig. 2, which
comprises five modules, i.e., ResNet, BiLSTM, decode pre-
diction, visual space class aggregation, and semantic space
class aggregation.

More specifically, given the input image x, ResNet first
extracts global visual features V(x) = [v1, v2, · · · , vT ] ∈

RT ×D , where T is the maximum decoding length, and D is
the feature dimension. Then, a two-layer BiLSTM is adopted
to capture the global semantic features for sequence modeling,
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denoted as F(x) = [ f1, f2, · · · , fT ] ∈ RT ×D . Last, the
semantic features F is decoded to a text sequence predic-
tion by an RNN decoder. During training, the source and
target samples are optimized individually using supervised
cross-entropy and unsupervised entropy minimization.

Our proposed visual space class aggregation and semantic
space class aggregation constitute a dual intra-class aggre-
gation strategy. The visual space class aggregation module
is employed for clustering visually similar characters with
pseudo-labels from the source and target domains. The seman-
tic space class aggregation module is used to aggregate
pseudo-labeled semantic characters from the source and target
domains.

In the following subsections, we first introduce the main
parts of the decode prediction module, e.g., the RNN decoder
and the entropy minimization, and then the proposed visual
space class aggregation and semantic space class aggregation,
respectively.

C. Decode Prediction

As shown in Fig. 2, the RNN first autoregressively decodes
the attention-based semantic features in the decode prediction
module. Then, the unlabeled target data are optimized by
unsupervised entropy minimization.

1) RNN Decoder: The RNN decodes the attention-based
sequence features. At decoding time-step t, the representation
of the most relevant part to the character yt of the semantic
features F is defined as a context vector gt ,

gt =

T∑
i=1

αt,i fi , (1)

where fi ∈ RD is the i-th semantic feature, and αt,i ∈ (0, 1)

is attention weight, which is calculated as follows,

αt,i =
exp(et,i )∑T

j=1 exp(et, j )
, (2)

where the attention score et,i indicates the attention of the
decoding character yt to the i-th sequence feature. Specifically,
et,i is defined as,

et,i = ωT tanh (Wsst−1 +W fF + b) , (3)

where ω, Ws , W f , and b are trainable parameters, and st−1
is the hidden state of the RNN at time t-1.

Then, the current hidden state st is updated as follows,

st = RN N (st−1, yt−1, gt ) , (4)

where yt−1 is the one-hot encoding at time t-1. In our method,
yt−1 is one-hot encoding of the label for source domain and
the prediction for target domain.

Thereafter, the probability of the current predicted character
yt is computed by,

p(yt |x) = so f tmax (Wost + bo) , (5)

where Wo and bo are trainable parameters of a linear layer.

2) Entropy Minimization: Entropy minimization, known as
entropy regularization, has been widely used in self-supervised
and unsupervised learning. To enlarge the margins of features
across different categories of characters, we adopt unsuper-
vised entropy minimization to optimize the unlabeled target
data. For a target sample x j ∈ DT , each predicted character
yt has an entropy value. Then, the entropy value of a predicted
text sequence is the sum of the entropy value of each character.
Thus, the entropy minimization of a target domain is defined
as follows,

Lent =
1

N t

N t∑
j=1

T∑
t=1

−p(y j, t |x j ) log p(y j, t |x j ) , (6)

where p(y j, t |x j ) is the predicted probability of each character
after the softmax function, N t is the number of target samples,
and T is the pre-defined maximum decoding length.

It is worth noting that since the target domain has no
supervised information, entropy minimization could suffer
from overconfidence, even if the predictions are incorrect.
To mitigate this problem, the target data is optimized based
on a pre-trained supervised Baseline model, which is trained
only on source data by cross-entropy,

Lcrs_ent =
1

N s

N s∑
i=1

T∑
t=1

− log p(yi, t |xi ) , (7)

where p(yi, t |xi ) is the predicted probability of each character
after the softmax function, and N s is the number of source
samples.

D. Visual Space Class Aggregation

As mentioned previously, besides considering the contextual
semantics, the accurate recognition of each character is also
crucial for a sequence recognition task such as text recognition.
Moreover, the visual features of each character may contain
valuable information, such as stroke features and appearance
features, which are essential for the recognition of individual
characters. Therefore, extracting and processing the visual
character features becomes critical to the text recognition task.
For this purpose, we propose the visual space class aggregation
module, mainly composed of a newly introduced single-
head self-attention submodule, feature filter, and intra-class
aggregation with a visual space center loss. Thereinto, the
single-head self-attention module extracts fine-grained visual
character features. After that, the low-confidence characters are
filtered out in the feature filter step. Accordingly, intra-class
aggregation in visual space with a center loss is performed
based on these visual character features. In this way, the
domain drift problem is mitigated by fine-grained alignment
of visual character features.

1) Single-Head Self-Attention (SSA): To extract
fine-grained visual character features from the global
visual features V , we introduce a single-head self-attention
module according to the multi-head self-attention (MSA)
[34], which maps the global visual features V to the enhanced
visual features AV . Technically, as shown in Fig. 3, the global
visual features V ∈ RT ×D are input to three independent
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Fig. 3. The structure of SSA module. It maps the global visual features V
to enhanced visual features AV . ⊗ denotes pixel-wise multiplication.

Fig. 4. The structure of feature filter module. It filters out characters with
low confidence from the enhanced visual features AV . δ(·) is a threshold
function. ⊗ denotes pixel-wise multiplication.

linear transformations to obtain Q ∈ RT ×D , K ∈ RT ×D , and
V ∈ RT ×D , respectively. Then, the enhanced visual features
AV ∈ RT ×D are defined as follows,

AV = so f tmax (
QK T
√

D
)V . (8)

2) Feature Filter: Since no character-level annotation exists
for the source and target domains, the extracted fine-grained
visual character features are based on pseudo-label. This
may lead to relatively inaccurate visual character features.
To mitigate this problem, we introduce a feature filter module
for filtering out visual character features that are not easily
distinguishable, shown in Fig. 4. Intuitively, the character is
easier to distinguish if the probability is higher. Technically,
the enhanced visual character features AV are processed by a
linear layer for classification output, and the maximum prob-
ability p(yt |x) can be obtained by argmax. Then, a threshold
function δ(·) is defined,

δ(p) =

{
1, p(yt |x) ≥ τ

0, otherwise
, (9)

where τ is a threshold parameters, p(yt |x) is the maximum
probability after the softmax function.

Meanwhile, the enhanced visual character features AV are
reshaped to obtain features C′

V = {(cVi , zVi )}M ′

i=1, where zVi is
the pseudo-label of visual character feature cVi , and M ′ is the
number of visual characters before feature filter. Finally, based
on the threshold function δ(·), we get the more distinguished
visual character features CV ,

CV = C′

V ⊗ δ(p) , (10)

where ⊗ denotes pixel-wise multiplication. The key idea is if
the probability is greater than the threshold τ , the character
feature cVi is retained; otherwise, it is discarded. That is,
we obtain the set of visual characters CV = {(cVi , zVi )}M

i=1,
where zVi is the pseudo-label of visual character feature cVi ,
and M is the number of valid visual characters from the source
and target domains after feature filter.

3) Visual Space Center Loss: Generally, whether in the
source or target domain, the same characters always have
similar visual features. We hope the character-specific visual
knowledge learned from the source domain can be trans-
ferred to the target domain. For this purpose, we propose an
intra-class aggregation step in visual space. More specifically,
we cluster similar visual characters originating from the source
and target domains with a center loss to make similar visual
characters close in the embedding space. In this way, the
character-specific knowledge learned from the source domain
is transferred to the target domain by aligning visual characters
to learn the domain-invariant fine-grained visual character
features. Thereinto, the visual space intra-class aggregation
based on visual character features is implemented by a center
loss defined as follows,

Lv_center =
1

2M

M∑
i=1

∥cVi − κzVi
∥

2
2 , (11)

where κzVi
is the class center of category zVi in visual embed-

ding space, which is randomly initialized. The attention-based
text recognition task has 38 class centers: 10 numbers,
26 case-insensitive letters, a start symbol [‘GO’], and a stop
symbol [‘S’].

E. Semantic Space Class Aggregation

It is necessary to infer the contextual semantics of each char-
acter for the recognition of individual characters in sequence
recognition tasks. For this purpose, we propose the semantic
space class aggregation module as shown in Fig. 2, composed
of cross attention, projection head, and intra-class aggregation
with a semantic space center loss. Specifically, the cross
attention locates the semantic character features. After that,
the projection head maps the character features to a semantic
embedding space. Similarly, the feature filter module is applied
to obtain more distinguishable semantic character features.
Finally, class aggregation with a center loss in semantic space
is conducted. In this way, the domain migration could be
mitigated by fine-grained alignment of semantic character
features.

1) Cross Attention: Sequence-to-sequence cross attention
described in III-C.1 is utilized to extract semantic character
features [10], [35], [36]. After the cross attention on global
semantic features F(x) = [ f1, f2, · · · , fT ], the semantic
character feature c̃F can be directly denoted as,

c̃F
de f
= gt =

T∑
i=1

αt,i fi . (12)

In this way, the character feature c̃F is the weighted sum of
all the semantic features F .

As lexical dependence exists among characters, it can be
encoded to the character feature representation. Thus, another
available semantic character feature representation can be
denoted as,

c̃F
de f
= st = RN N (st−1, yt−1, gt ). (13)
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In this way, the character feature integrates the hidden state
st−1 of RNN, the output yt−1 at time t-1 (the ground truth for
source domain and the prediction for target domain) and the
weighted sum of all the semantic features F .

2) Projection Head: To improve the robustness of the
extracted character features, a projection head submodule is
designed to map the character features to a semantic embed-
ding space. More specifically, two different feature projection
heads are created in our method.

The first one is Linear Mapping, where the transformed
character features cF is obtained through a linear layer, defined
as follows,

cF = Wcc̃F + bc , (14)

where Wc and bc are trainable parameters of a linear layer.
The other one is Identity Mapping, which directly adopts

the character features decoded by cross attention as the com-
ponents of semantic space class aggregation, where cF = c̃F .

In addition, similar to the visual character feature filter, the
feature filter scheme is also adopted to filter out semantic
characters with low confidence. Finally, we get distinguishable
semantic character features CF = {(cFi , zFi )}N

i=1, where zFi is
the pseudo-label of semantic character feature cFi , and N is
the number of valid semantic characters from the source and
target domains after feature filter.

3) Semantic Space Center Loss: The intra-class aggrega-
tion in visual space is based on visual character features;
however, for sequences, each character also contains rich con-
textual semantics, which is critical for correctly recognizing
sequences. Therefore, to align semantic character features,
we similarly cluster similar semantic characters originating
from the source and target domains. Semantic space intra-class
aggregation is also implemented by a center loss. In this
way, domain-invariant fine-grained character features can be
learned to mitigate the domain drift problem. In specific,
the semantic space intra-class aggregation based on semantic
character features is defined as follows,

Ls_center =
1

2N

N∑
i=1

∥cFi − ρzFi
∥

2
2 , (15)

where ρzFi
is the class center of category zFi in semantic space,

which is randomly initialized. Similar to center loss in visual
space, there are 38 class centers in semantic space.

F. Overall Objective Function

Jointly considering the losses defined above, i.e., supervised
cross-entropy loss for the source domain, unsupervised entropy
minimization loss for the target domain, center loss for visual
space, and center loss for semantic space, we define the overall
objective of our method as follows,

L = Lcrs_ent + λ1Lent + λ2Lv_center + λ3Ls_center , (16)

where λ1, λ2, and λ3 are trade-off parameters.

IV. EXPERIMENTS

In this section, we first introduce the datasets and the
experimental settings, including implementation details and
evaluation metrics. Thereafter, we show the experimental
results compared with the state-of-the-art methods, followed
by some ablation experiments. Finally, we give some further
analyses and visualizations.

A. Datasets

We conduct extensive experiments to validate the proposed
CADA on widely-used benchmark datasets and our large-scale
handwritten dataset.

1) Synthetic Text Datasets (Syn): Synth90k (MJ) [37] is
a synthetic text dataset. It contains 8.9 million images gen-
erated from a set of 90k common English words, which
are annotated with word sequences. SynthText (ST) [38] is
another widely-used synthetic text dataset containing 5.5 mil-
lion images with English words. In our experiments, MJ and
ST are jointly used only for the training set of the source
domain.

2) Real Scene Text Datasets: IIIT5k-Words (IIIT5K) [39] is
crawled from Google image searches with query words such
as ‘billboards’ and ‘movie posters’. It contains 2000 cropped
training images and 3000 cropped test images. Street View
Text (SVT) [40] is collected from Google Street View.
It contains 2000 training images and 3000 test images.
ICDAR-2003 (IC03) [41] is a camera-captured text dataset.
It contains 1156 cropped training images and 860 cropped
test images. ICDAR-2013 (IC13) [42] contains 848 training
images and 857 test images. SVT-Perspective (SVTP) [43]
contains 645 test images, which are also collected from Google
Street View but have many perspective texts. CUTE80 [44] is
collected for curved text containing 288 cropped test images.
ICDAR-2015 (IC15) [45] is collected by people who wear
Google Glass. Consequently, it contains some perspective and
blurry texts. It contains 4468 cropped training images and
1811 cropped test images.

These real scene text datasets are generally divided into
regular scene texts, including IIIT5K, SVT, IC03, and IC13,
and irregular scene texts, including SVTP, CUTE80, and IC15.

3) Handwritten Text Datasets: IAM [46] is a handwrit-
ten English text dataset written by 657 writers. It contains
1539 text pages, 13353 text lines, and 115320 words. Accord-
ing to the standard partition1 [47], it includes 53841 training
words, 8566 validation words, and 17616 test words, including
numbers, upper and lower case letters, and special characters.
In our experiments, special characters are filtered, and upper
and lower case letters are case-insensitive. CVL [48] is a
public dataset for writer retrieval, identification, and word
spotting, written by 310 writers. It contains 12289 training
words and 84949 test words. We also conduct experiments on
our large-scale handwritten English text dataset (SDU-OM),
written by 39920 writers. It contains 2,027k training words,
290k validation words, and 579k test words.

1https://fki.tic.heia-fr.ch/databases/iam-handwriting-database
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TABLE I
THE WORD PREDICTION ACCURACY RESULTS OF CADA AND SOME STATE-OF-THE-ART METHODS ON DOMAIN ADAPTATION FROM SYNTHETIC TEXT

TO REAL SCENE TEXT, INCLUDING BOTH REGULAR AND IRREGULAR DATASETS. PRI: PRIVATE DATASET, R: REAL SCENE TEXT

B. Experimental Settings

1) Implementation Details: For a fair comparison, our
model adopts the same protocols following [12]. For example,
a Baseline model is first trained with only labeled source data,
serving as a pre-trained model. Thereafter, it can be fine-tuned
or domain adaptive to reduce the domain gaps. The trade-off
parameters λ1, λ2, and λ3 in Eq. 16 are emperically set to
{0.1, 0.0001, 0.00001} on synthetic text to real scene text task,
and {0.1, 0.0001, 0.0001} on other tasks, respectively. We use
Adadelta as the optimizer, with a learning rate initialized to
0.1. The maximum number of training steps is set to 300k.
If not specified, all experiments are conducted on an NVIDIA
2080Ti GPU with batch size 128.

2) Evaluation Metric: In the experiments, word accuracy is
adopted to evaluate scene text recognition. In addition, we use
Average to measure performance comprehensively, which is
the word accuracy on all test datasets. Word Error Rate (WER)
and Character Error Rate (CER) are commonly applied to
measure the performance of handwritten recognition models.
WER represents the proportion of words improperly recog-
nized. CER is the Levenstein distance between the predicted
character sequence and the ground truth sequence.

C. Domain Adaptation of Synthetic Datasets

In this section, we explore the domain adaptation of syn-
thetic text to real scene text. The source domain is labeled
synthetic text, MJ and ST. Following the protocol in [10], the
target domain is unlabeled real scene text, i.e., the union of
training sets IIIT5K, SVT, IC13, and IC15. Further, the real
scene text is divided into regular and irregular text. Therefore,
two adaptation experiments are conducted: synthetic text to
regular scene text (Syn→RST) and synthetic text to irregular
scene text (Syn→IST).

Additionally, to verify the domain adaptation performance
of CADA, we focus on unconstrained text recognition without
any lexicon. The Baseline model is trained only with labeled
source data and acts as a pre-trained model in all experiments.
The Finetune model is trained on labeled source data and a
small number of labeled target data.

1) Synthetic Text to Regular Real Text: Although the syn-
thetic text is based on the style of scene text for synthesized

data, there are still domain discrepancies between similar
domains due to differences in illumination, background, etc.
To demonstrate the adaptability of CADA between similar
domains, we conduct domain adaptation experiments from
synthetic text to regular scene text. The results are summarized
in Table I, from which we can observe:

• Compared with the Baseline, CADA gains improvement
on most regular datasets. The enhancement shows that
CADA can use the knowledge learned in the source
domain and transfer it to the target domain even if the
target data has no supervised information.

• Compared with the state-of-the-art methods ASSDA
[10] and SMILE [9], CADA obtains the best results,
except for the IC03 dataset. One of the possible rea-
sons is that the IC03 dataset is too simple for base-
line alone to extract sufficient feature representation.
Therefore, the performance through domain adaptation is
restricted.

• CADA achieves comparable results compared with Fine-
tune model. One reason is that it can transfer the knowl-
edge learned in source data to target data; the other
reason is that it can automatically learn domain-invariance
features to reduce domain gaps.

2) Synthetic Text to Irregular Real Text: The experimental
results of domain adaptation from synthetic text to irregular
scene text (Syn→IST) are also shown in Table I. From the
results on irregular scene text, we can find:

• Compared with the Baseline, CADA performs better
on the three irregular scene text datasets. In particular,
CADA achieves a 4.18% (74.22% vs. 78.40%) improve-
ment on CUTE80.

• Compared with the state-of-the-art methods ASSDA and
SMILE, CADA achieves much better results than them.
The main reasons include that CADA considers the
interaction between the source and target domains and
optimizes the target domain using visual and semantic
character features.

• CADA achieves comparable results to the Finetune
model. It obtains better results on CUTE80 than the
finetune model, further demonstrating the effectiveness
of adaptation ability.
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TABLE II
THE WORD PREDICTION ACCURACY RESULTS OF CADA, BASELINE AND FINETUNE ON THE DOMAIN ADAPTATION FROM HANDWRITTEN TEXT TO

REAL SCENE TEXT, INCLUDING REGULAR SCENE TEXT AND IRREGULAR SCENE TEXT. *TEST REPRESENTS
THE TEST RESULT ON THE HANDWRITTEN TEXT

To summarize, CADA performs well on the tasks of domain
adaptation from synthetic text to real scene text. It confirms
the effectiveness of the proposed method.

D. Domain Adaptation of Cross-Domain Tasks

We further evaluate the performance of CADA on two
cross-domain adaptation tasks, i.e., handwritten text to real
scene text and synthetic text to handwritten text.

1) Handwritten Text to Real Scene Text: In the task from
handwritten text to real scene text (STR), the source domain
is handwritten text, and the target domain is real scene text.
We adopt three handwritten datasets, i.e., IAM, CVL, and
SDU-OM; therefore, there are three domain adaptation tasks
from handwritten text to real scene text, i.e., IAM→STR,
CVL→STR and SDU-OM→STR. CADA is compared with
the Baseline model and the Finetune model. Thereinto, the
Baseline model is trained with the training set of handwritten
text only and tested directly on the real scene text. The
Finetune model is fine-tuned with a collection of real scene
text training sets. In general, the source data of CADA is the
handwritten text training set, and the target data is a collection
of the real scene text training set. The results are summarized
in Table II, from which we can observe:

• The Baseline model performs well on the test data of
handwritten text, while its performance drops sharply on
real scene text, indicating the discrepancy between the
two domains and that the feature representation learned
in handwritten text fails to generalize well to scene text.

• Compared to the Baseline model, however, CADA
achieves performance improvements on the domain adap-
tation experiments for all three datasets, demonstrating
the effectiveness of domain adaptation of CADA.

• The performance gap between CADA and the supervised
Finetune model is apparent. Significantly, compared with
the results in Table I, the performance of CADA, Baseline
and Finetune deteriorates significantly, which demon-
strates the hardness of domain adaptation in different
domains. Just as stated in [8], exploring a general model
for multiple domains is essential.

2) Synthetic Text to Handwritten Text: The experimental
results of domain adaptation from synthetic text to handwritten
text are shown in Table III. From the results, we can find:

TABLE III
THE WORD ERROR RATE (WER) AND CHARACTER ERROR RATE (CER)

RESULTS ON THE TASK FROM SYNTHETIC
TEXT TO HANDWRITTEN TEXT

• Compared with Baseline model, CADA improves on
all tasks, further demonstrating that CADA can explore
the potential inter-domain similarity between different
domains.

• On the task of Syn→IAM, we find that CADA achieves
about 8% performance improvement over SSDAN in
terms of both WER and CER. Moreover, it achieves the
best CER results among these three methods, while it is
inferior to ASSDA in terms of WER.

• Similar to the results in Table II, CADA still has a severe
gap compared to the supervised Finetune model, further
demonstrating the hardness of cross-domain adaptation.

E. Generality of CADA

The proposed core modules can be deployed to most
encoder-decoder-based text recognition methods. For example,
the visual space class aggregation module can be applied to
global visual features extracted by an encoder. The semantic
space category aggregation module can be applied to con-
textual semantic features extracted by semantic modeling.
In addition, the entropy minimization of the target domain
can be applied to the prediction output after softmax. To val-
idate this, we further perform experiments based on several
representative text recognition models with different decoding
ways, including RNN-based, transformer-based, and language-
based models.

It is inappropriate to compare directly with these results
in the original papers since many key settings differ from
our task. Specifically, first, different training set types,
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TABLE IV
THE WORD PREDICTION ACCURACY RESULTS OF TEXT RECOGNITION METHODS BASED ON DIFFERENT DECODING WAYS. TRANS: TRANSFORMER;

LAN: LANGUAGE; ST(7.3): ANOTHER VERSION OF ST CONTAINING 7.3 MILLION IMAGES; SA:
A SYNTHETIC DATASET CONTAINING 1.2 MILLION IMAGES

e.g., Scatter [54] utilized an additional synthetic dataset SA
containing 1.2 million images; second, different training set
versions, e.g., Aster [53], and SRN [55] used an ST containing
7.3 million images, while the ST used in our method contains
5.5 million images; third, different test set versions, such as
IC03 (860 vs. 867), IC13 (857 vs. 1015), and IC15 (1811 vs.
2077) all contain two versions (numbers in parentheses denote
the number of samples in the test set). Therefore, for a fair
comparison, we reproduced these methods based on the official
code under the same training set and test set version, as shown
in the *-Baseline of Table IV. In addition, we also reproduced
the ABINet [17] with the same setting as in our method. The
results of ABINet-Baseline are comparable to or even better
than those published in the original paper. The results of these
baselines provide a more fair basis to show the superiority
of the core modules of our method. These baselines act as
pre-trained models for *-CADA. From the results in Table IV,
we can find that:

• Compared with *-Baseline, *-CADA obtains different
degrees of improvement according to the Average. Specif-
ically, it improves by 0.5%, 0.7%, 0.3%, and 0.26%
on Aster, Scatter, SRN, and ABINet, respectively. This
indicates that based on the global visual and semantic
features extracted by baselines with varying capacities,
the two-class intra-aggregation strategy can further extract
fine-grained character features.

• Our method achieves a clear improvement on the task
of synthetic text to irregular scene text. Specifically,
our method is improved on 2-3 datasets over three
irregular text datasets. The reason is that fine-grained
visual features are more beneficial for recognizing indi-
vidual characters in irregular text, such as curved text.
In particular, SRN improves on all three datasets because
its bidirectional inference provides more accurate global
semantic features for intra-class aggregation in semantic
space.

From Table IV, we can also observe that the performance of
*-CADA decreases on several datasets. One reason may be that
our optimization aims at the global optimum, i.e., the Average

metric that more comprehensively reflects the performance of
the model. When the model achieves the global optimum, there
may be cases that it is not optimal on some individual datasets.
In addition, the performance degradation on some individual
datasets mainly occurs on regular scene text. Another reason
may be that with the goal of global optimization, the Baseline
model is sufficient to extract visual and semantic features
of regular text, making the model perform well on more
challenging irregular scene text but limiting the performance
on regular text. Following ASSDA, we conducted experiments
where the target domain was a single scene dataset to validate
the above conjecture, taking ABINet as an example. Due to the
limitation of dataset availability, we performed experiments on
the III5K, SVT, IC13, and IC15 datasets. From the ABINet-
CADA-single in Table IV, we can see that our method can
further improve the performance when the target domain is a
single scene dataset. Benefiting from dual intra-class aggrega-
tion in visual and semantic space, the model can automatically
transfer knowledge beneficial to the single dataset to improve
recognition performance.

Overall, global performance can be improved by simply
deploying off-the-shelf text recognition models with different
decoding ways. These experimental results demonstrate the
generality of our method.

F. Ablation Study

1) The Effect of Each Module: To sufficiently investigate
the effect of entropy minimization T ent , visual space class
aggregation Vcenter , and semantic space class aggregation
Scenter , we conducted domain adaptation on two types of
tasks: synthetic text to real scene text and handwritten text.
Thereinto, the results of synthetic text to real scene text are
summarized in Table V; those of synthetic text to handwritten
text (SDU-OM) are shown in Table VI. We index all submod-
els and CADA from top to bottom in both tables as 1-8. From
these results, we have the following observations:

• Model-2, model-3, and model-4 outperform model-1,
demonstrating that each module is effective when applied
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TABLE V
THE WORD PREDICTION ACCURACY RESULTS OF DIFFERENT COMPONENTS ON THE DOMAIN ADAPTATION FROM SYNTHETIC TEXT TO REAL SCENE

TEXT DATASETS, INCLUDING BOTH REGULAR SCENE TEXT AND IRREGULAR SCENE TEXT

TABLE VI
THE WORD ERROR RATE (WER) AND CHARACTER ERROR RATE (CER)

RESULTS OF DIFFERENT COMPONENTS ON THE DOMAIN ADAPTATION
FROM SYNTHETIC TEXT TO HANDWRITTEN TEXT

individually to the adaptation. Meanwhile, the improve-
ment of model-4 is the most significant, indicating that
the entropy minimization can fully explore the feature
representation in unsupervised learning.

• Compared with model-4, model-6 and model-7 also
improve in most cases, including intra-class aggregation
in visual and semantic space, respectively. It indicates
that the class aggregation based on center loss can align
feature distribution from source and target domains to
transfer knowledge from source data to target data and
improve model performance in the target domain.

• It is worth noting that CADA (model-8) achieves the best
results on most datasets and the best average performance,
as shown in Table V. In addition, it also achieves the
best results in terms of both WER and CER on the
task from synthetic text to handwritten text, as shown
in Table VI, further demonstrating the effectiveness of
different modules.

2) The Effect of Semantic Character Feature: As mentioned
previously, we can adopt two schemes to extract semantic
character features, i.e., gt and st . To evaluate whether semantic
character feature can contribute to performance improvement
or which type of character feature is more effective, we con-
duct adaptation experiments from synthetic text to real scene
text on two submodels, i.e., Baseline+Scenter (model-2 in
Table V) and Baseline+T ent+Scenter (model-6 in Table V).
The results are shown in Table VII. We observe that:

• Character features extracted based on gt are more valu-
able for intra-class aggregation in semantic space than
those extracted based on st .

• The performance of models with gt or st to extract
character features is better than that of the Baseline
model, demonstrating the effectiveness of leveraging the
character features. It also shows the effectiveness of the
semantic space class aggregation in CADA on domain
knowledge transfer.

3) The Effect of the Projection Head: As mentioned pre-
viously, we can adopt two schemes to process the character
features in the projection head module, i.e., Identity mapping
and Linear mapping. Thereinto, the first does not transform the
features; in contrast, the latter adopts a fully-connected layer
with dimension 256 × 256 to further transform the features.
To evaluate which one is better, we also conduct experiments.
The results are also incorporated into Table VII. We find that
the Identity mapping has a slight advantage over the Linear
mapping. It means that the Identity mapping is robust enough
to extract character features. However, a linear transformation
may overly modify the original embedding and weakens the
effect of semantic space intra-class aggregation.

4) The Effect of Visual Space Class Center: Visual character
features also contain appearance information and are important
for text recognition. Maintaining the number of semantic space
character class centers as 38, we further explore the effect of
the number of visual space character centers. By default, the
number of character centers in visual space is 38, i.e., similar
characters in the source and target domains share a common
class center, defined as Shared. In addition, we tested the
number of character centers in visual space is 76, i.e., similar
characters in the source and target domains have their class
center, defined as Respective. As presented in Table VIII, the
best result is obtained by generating a shared class center for
each category. One of the main reasons is that Respective
implements intra-domain clustering, while Shared enables
cross-domain clustering, which is essentially an alignment of
fine-grained features of the source and target domains of UDA.

G. Algorithm Analysis

1) Analysis of Parameter Sensitivity: We evaluate the sensi-
tivity of the hyper-parameters, i.e., λ1, λ2, and λ3. The evalua-
tion is conducted by changing one parameter while keeping the
other hyper-parameters fixed. Specifically, we first explore the
effect of λ1 with different values, i.e., {1, 0.1, 0.01}. Fig. 5(a)
shows the model achieves the best results when λ1 = 0.1.
Thereafter, we explore the relative weights of class aggregation
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TABLE VII
THE WORD PREDICTION ACCURACY RESULTS OF DIFFERENT CHARACTER FEATURES EXTRACTING AND PROJECTION HEADS ON THE DOMAIN

ADAPTATION FROM SYNTHETIC TEXT TO REAL SCENE TEXT DATASETS, INCLUDING BOTH
REGULAR SCENE TEXT AND IRREGULAR SCENE TEXT

TABLE VIII
THE WORD PREDICTION ACCURACY RESULTS OF VISUAL CHARACTER FEATURES ON THE NUMBER OF CLASS CENTERS ON THE DOMAIN ADAPTATION

FROM SYNTHETIC TEXT TO REAL SCENE TEXT DATASETS, INCLUDING BOTH REGULAR SCENE TEXT AND IRREGULAR SCENE TEXT

TABLE IX
THE WORD PREDICTION ACCURACY RESULTS OF DIFFERENT COMBINATION OF λ2 AND λ3 ON THE DOMAIN ADAPTATION FROM SYNTHETIC TEXT TO

REAL SCENE TEXT DATASETS, INCLUDING BOTH REGULAR SCENE TEXT AND IRREGULAR SCENE TEXT.
* REPRESENTS THE PARAMETERS USED IN OUR EXPERIMENTS

in visual space and semantic space, i.e., λ2 and λ3. As shown
in Table IX, the model achieves the best average result when
λ2 = 0.0001 and λ3 = 0.00001. In addition, the model
achieves better performance when λ2 takes a larger value
than λ3. It demonstrates that the character features in visual
space are more capable of facilitating intra-class aggregation,
which also means that visual character features contain much
valuable information to promote positive transfer. In addition,
we also conduct parameter sensitivity experiments for the
threshold τ . From Fig. 5(b), it can be seen that the performance
of intra-class aggregation in visual space and semantic space
can be better when τ = 0.3 on balance.

2) Analysis of Model Complexity: We analyze the spatial
and temporal complexity of several representative models in
terms of trainable parameters, memory footprint, training time,
and inference time. For a fair comparison, we test all models
with the same batch size on the same hardware. For the
temporal complexity, we run five times to take the average.
Specifically, the training time is the 100 iterations of each
model, and the inference time is the average time over all
the test datasets. As seen from Table X, CADA does not
introduce additional inference time compared to Baseline.
This is because the dual intra-class aggregation and entropy

Fig. 5. The results of parameter sensitivity. (a): the model training accuracy
with different λ1 on the domain adaptation of synthetic text to real scene text.
(b): the results of two variants with different threshold values.

minimization are only introduced in the training phase and
removed in the inference phase. With comparable training
parameters, the memory consumption of the transformer-based
model SRN-CADA is about 3.3x more than that of CADA,
possibly due to the more layers of encoding and the increased
dimensions of the features. In addition, the inference time
of Scatter-CADA is 4.4x that of CADA due to its multiple
decoding blocks.
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TABLE X
MODEL COMPLEXITY ANALYSIS RESULTS. ALL RESULTS ARE THE

AVERAGE OF 5 RUNS WITH BATCHSIZE=48. TRANS:
TRANSFORMER; LAN: LANGUAGE

Fig. 6. Visualization of semantic character features from target domain by
t-SNE tool on synthetic text to real scene text task.

Fig. 7. Visualization of semantic character features from source and target
domains by t-SNE tool on synthetic text to handwritten text task.

3) Visualization of the Feature Distribution: To further
demonstrate the effectiveness of intra-class aggregation,
we visualize the semantic character features using the t-SNE
tool. Specifically, in synthetic text to real scene text, we ran-
domly select several characters from the target domain to
visualize the semantic character features of the Baseline,
CADA, and Finetune models, respectively. As shown in Fig. 6,
compared to the Baseline, CADA can more clearly distinguish
the feature distribution of each character, which indicates that
the semantic space class aggregation can well cluster the same
characters from source and target domains.

Further, Fig. 7 illustrates the feature distribution of source
and target data of Baseline, CADA, and Finetune models in the
task of synthetic text to handwritten text. We can observe that,
for Baseline, the distribution of target samples is more clearly
bounded from the distribution of source samples. However,
after domain adaptation by CADA, the two distributions are
brought closer, making the target distribution indistinguishable
from the source one.

4) Visualization of Attention Result: To illustrate the effec-
tiveness of the attention scheme in CADA, we also visualize
the attention results of each decoding time step in the semantic
space. As shown in the first four rows of Fig. 8, CADA
can locate fine-grained character features more precisely than
the Baseline model, which means that it can further perform
character-level class aggregation.

Fig. 8. Attention visualization and prediction reuslts. The top four rows are
right cases, and the bottom four rows are failed cases. For the prediction
column, the first row with bold font is the label; the second row is the
prediction of baseline; the third row is the prediction of CADA. All reds
denote failures, including boxes and fonts, and greens denote correct.

5) Analysis of Failure Case: The failure cases of CADA
are shown in the bottom four rows of Fig. 8, which can
be divided into two categories. 1) CADA suffers from the
attention drift [7] problem, which limits the effect of intra-class
aggregation by interfering with character features. This is
mainly reflected in the misidentification of sequence lengths.
2) The CADA may not work when both visual and semantic
information is missing since the gain of CADA is mainly
due to the dual-class intra-aggregation, which is based on
the visual and semantic character features. With low-quality
images, it is difficult for CADA to extract visual and semantic
features, such as ‘r’ and ‘u’ in ‘cruise’. In addition, CADA
may fail if the handwritten text is too scribbled to resemble
other characters visually. For instance, the ‘t’ in ‘tomorrow’
seems like ‘l’, or the ‘t’ in ‘coefficieuts’ looks like ’f ’, which
leads to wrong recognition of both Baseline and CADA. The
visual similarity caused by the strokes can interfere with the
semantic understanding and thus affect the recognition results.
In general, our proposed method can perform well when
visual and semantic information is not missing and attention
is accurately perceived.

V. CONCLUSION

This paper proposes a novel unsupervised domain adap-
tation method based on class aggregation. We extract the
character features in visual and semantic spaces, respectively.
Thereinto, a single-head self-attention module is introduced
to extract visual character features. Besides, we employ cross
attention to extract semantic character features. In addition,
a center loss is used for dual intra-class aggregation to pull
close similar characters. Extensive experiments on multiple
domains have been conducted. The results demonstrate the
superiority of our proposed method over several state-of-the-
art methods.
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It is worth noting that our proposed method has several
limitations. Our approach may suffer from attention drift
problems and low-quality images in some cases, which may
limit the performance of CADA. We will further explore these
in our future work.
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