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ProtoUDA: Prototype-based Unsupervised
Adaptation for Cross-Domain Text Recognition
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Abstract—Text recognition reads from real scene text or handwritten text, facilitating many real-world applications such as driverless
cars, visual Q&A, and image-based machine translation. Although impressive results have been achieved in single-domain text
recognition, it still suffers from great challenges in cross-domain due to the domain gaps among the synthetic text, the real scene text,
and the handwritten text. Existing standard unsupervised domain adaptation (UDA) methods struggle to solve the text recognition task
since they view a domain or a text image (containing a character sequence) as a whole, ignoring the subunits that make up the
sequence. In the paper, we present a Prototyped-based Unsupervised Domain Adaptation method for text recognition (ProtoUDA),
where the class prototypes are computed from the source domain, target domain, and the mixed (source-target) domain, respectively.
Technically, ProtoUDA initially extracts pseudo-labeled character features under word-level supervised information. Further, based on
these character features, we propose two parallel and complementary modules to perform class-level and instance-level alignment,
which explicitly transfer the knowledge learned in the source domain to the target domain. Among them, class-level alignment is to
close the distance between the similar source prototypes and target prototypes. The instance-level alignment is based on contrastive
learning, making the character instances of the mixed domain close to the corresponding class mixed prototype while staying away
from other class mixed prototypes. To our knowledge, we are the first to adopt contrastive learning in UDA-based text recognition tasks.
Extensive experiments on several benchmark datasets show the superiority of our method over state-of-the-art methods.

Index Terms—Unsupervised learning, Prototype, Text recognition, Contrastive learning, Domain adaptation.
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1 INTRODUCTION

S INGLE-domain text recognition has made great progress
in recent years [1], [2], [3]. However, it is still much

more challenging in cross-domain text recognition [4], [5],
[6], in which the source and target domains are different.
One of the main reasons is that there are various inter-
domain gaps, such as strokes, structure, and background;
consequently, a model trained in a source domain may
degrade in performance significantly when applied directly
to a target domain, which is known as the domain drift
problem [7]. In addition, in many scenarios, people usually
lack sufficient labeled target data; as a result, fine-tuning
a model may lead to overfitting problems. Therefore, it
is an important and challenging problem to transfer the
knowledge learned in a source domain to a target domain to
mitigate the domain gaps in cross-domain text recognition.

Unsupervised domain adaptation [8] is an effective way
to address the domain drift problem. It aims to mitigate the
domain gaps by exploiting unlabeled target data. Therefore,
the domain drift problem may be mitigated when unsu-
pervised domain adaptation is applied to cross-domain text
recognition. Many UDA methods have been proposed, e.g.,
statistical based methods [9], [10], [11], adversarial learning
based ones [12], and self-training based ones [13], [14]. How-
ever, applying these methods directly to text recognition
tasks is not appropriate. For example, as shown in Fig. 1
(a), it treats the entire domain as a class, even if a domain
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Fig. 1. Different alignment for domain adaptation: (a) MMD-based adap-
tation which treats a domain as a class. (b) Our proposed method which
implements feature alignment at class and instance levels.

contains different instances. These methods ignore that text
sequences are composed of individual characters that can
be considered subclasses. The characters are the minimal
units that make up the text sequence. The correct recognition
of a sequence depends on the accurate recognition of each
subclass character.

More recently, the UDA-based method ASSDA [4] is
proposed for cross-domain text recognition. Although it
has considered the character classes, it views all character
classes in the source or target domain as one class and
does not distinguish them in different character classes. In
other words, ASSDA essentially treats the entire domain
as a class and makes two classes indistinguishable, i.e.,
the source class and the target class. Therefore, ASSDA
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can extract domain-invariant visual representations but not
fine-grained domain-invariant visual representations, i.e.,
character-level features.

In this work, we explore the distribution alignment of the
fine-grained character features, where identical characters
are a class, to extract fine-grained domain-invariant visual
representations at the character level. Moreover, inspired by
TPN [14], we assume the existence of three types of class
prototypes in an embedding space, i.e., source prototypes,
target prototypes, and mixed prototypes, respectively. Intu-
itively, on the one hand, the prototypes of the same class
originating from the source and target domains should be
close in the embedding space; on the other hand, similar
characters in the mixed domain generated by mixing the
source and target data should be as close as possible to
their class mixed prototypes while staying away from other
mixed prototypes.

With the above motivation, we propose a prototype-
based unsupervised domain adaptation method tailored
for cross-domain text recognition (ProtoUDA). As shown
in Fig. 1 (b), it implements fine-grained character feature
alignment at the class and instance levels. Specifically, based
on the attention decoding, a fine-grained representation
module is introduced to extract pseudo-labeled character
features. Then, two parallel and complementary modules
are designed to perform class-level and instance-level align-
ment, respectively. The former is based on source and target
prototypes, formulated to reduce the Euclidean distance
of similar class prototypes in the embedding space. Since
there is no explicit character-level supervised information,
inspired by the superiority of contrastive learning in self-
supervised visual representations, the latter is based on a
contrastive paradigm in the mixed domain. Characters in
the mixed domain should be close to their mixed prototype
while staying away from other class prototypes. With the
dual alignment of character features, ProtoUDA can extract
fine-grained domain-invariant feature representations. In
the inference phase, the class-level alignment and instance-
level alignment modules are removed. The test text is de-
coded directly; thus, inference efficiency is guaranteed.

In summary, our main contributions are as follows:
• We propose a novel prototype-based UDA method tai-

lored for text recognition, ProtoUDA, which can learn
fine-grained and domain-invariant representations to
transfer the knowledge learned in the source domain
to target domains.

• Two parallel and complementary modules are designed
to achieve class-level and instance-level alignment,
where the latter is enabled with contrastive learning. To
the best of our knowledge, we are the first to adopt con-
trastive learning in UDA-based text recognition tasks.

• Extensive experiment results demonstrate the superior-
ity of our ProtoUDA. It significantly boosts the accuracy
of cross-domain text recognition and achieves state-of-
the-art (SOTA) performance on benchmark datasets.

2 RELATED WORK

This section reviews the literature on unsupervised domain
adaptation, deep learning-based text recognition, and do-
main adaptation for text recognition.

2.1 Unsupervised Domain Adaptation

Unsupervised domain adaptation is a subtopic of semi-
supervised learning, which aims to transfer the knowledge
learned in labeled source data to unlabeled target data [15],
[16], [17]. These UDA methods can be categorized into
three branches. The first branch is to align feature distri-
butions across domains based on statistical characteristics,
e.g., Maximum mean discrepancy (MMD) [9] and correlation
alignment distance (CORAL) [10], [11]. The second branch
is adversarial learning methods based on a zero-sum two-
player game. For example, the pioneering work DANN
[18] learns domain invariant representations by formulat-
ing the problem as a minimax game. Coupled GANs [19]
directly applies GANs to domain adaptation to explicitly
reduce the domain drift by learning a joint distribution
of multi-domain images. The third branch is self-training-
based methods, which iteratively retrain a model through
the pseudo-labeled target samples. For instance, Huang et
al. [20] constructed a categorical domain-mixed dictionary
from the labels of the source data and the pseudo labels
of the target data and proposed a novel category contrast
technique (CaCo) introducing semantic priors on top of
instance discrimination for visual UDA tasks.

2.2 Deep Learning-based Text Recognition

With the development of deep learning, text recognition
has attracted attention over the past years [21], [22], [23].
Researchers have viewed text recognition as a sequence
recognition [24], which can be broadly divided into three
categories: CTC-based [25], [26], attention-based [27], [28],
[29], [30], and transformer-based [31], [32] methods. Connec-
tionist Temporal Classification (CTC) layer [33] makes end-
to-end sequence discriminative learning possible. Neverthe-
less, CTC-based methods [34] cannot handle complicated
two-dimensional structures, such as irregular curve text. In
this case, attention-based methods show superiority, which
can attend to relevant information for each character during
the decoding stage. For example, Baek et al. [35] proposed
a four-stage model, usually utilized as a baseline model.
However, since attention-based methods are autoregressive
decoding, many transformer-based methods are proposed,
which can decode in parallel and thus improve the decoding
efficiency.

Recently, contrastive learning-based self-supervised
methods have shown promising results in learning visual
representations [36], [37]. The key idea of contrastive learn-
ing is to keep positive pairs close while negative pairs
are far away. Inspired by SimCLR [38], SeqCLR [39] firstly
apply contrastive learning to text recognition, where patches
from different visual augmented images are considered
as positive pairs. In addition, considering the contextual
constraints, ConCLR [2] generates characters with different
contexts via simple image concatenation operations and
then optimizes the model by contrastive loss. Motivated
by these methods, we expand the contrastive learning to
UDA-based text recognition tasks. Rather than using visual
augmentations to generate positive pairs, we consider a
character to be a positive pair with its class prototype and a
negative pair with other class prototypes.
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Fig. 2. The pipeline of ProtoUDA. First, the Backbone extracts global features F for source/target images. Then, on the one hand, the features F
after Seq2Seq Attention is decoded autoregressively by RNN Decoder. Based on the predicted sequence, source data and target data are optimized
by supervised cross-entropy LCE and unsupervised entropy minimization LEM , respectively. On the other hand, two parallel and complementary
modules are designed to perform Class-level Alignment and Instance-level Alignment. Since there is no explicit character-level label information in
both the source and target domains, a Fine-grained Representation module is introduced to extract pseudo-labeled character features.

2.3 Domain Adaptation for Text Recognition

As single-domain text recognition has made great progress
recently, cross-domain text recognition has gradually gained
more attention. Domain adaptation for text recognition can
be divided into two main categories. The first is the adap-
tation of writing style [40], [41], [42], where an author is
considered as a domain. Owing to the differences in writing
styles, handwritten text recognition (HTR) models cannot
extract a general feature representation among multiple
authors. Therefore, it is necessary to adapt the writing style
for HTR. For example, MetaHTR [41] is a meta-learning-
based framework that meta-learns instance-specific weights
to exploit additional new-writer texts. Another category
is the adaptation of multiple scenes [4], [5], [6], where a
scene is viewed as a domain, such as synthetic text do-
main, real scene text domain, and handwritten text domain.
For instance, SMILE [6] optimizes the source and target
domains by supervised cross-entropy and unsupervised
entropy minimization, respectively, ignoring the interaction
between the two domains. ASSDA [4] is a sequence-to-
sequence domain adaptation method for text recognition via
adversarial loss based on global and local features.

3 PRELIMINARIES

3.1 Problem Formulation

The UDA-based text recognition task generally focuses on
the source and target domains, which have different low-
level feature distributions but similar high-level feature
distributions. Generally, the source domain is labeled syn-
thetic text, and the target domain is unlabeled real scene
or handwritten text. This task aims to mitigate the domain
gaps by transferring the knowledge learned in the source

domain to the target domain so that the model can perform
well on real scene or handwritten text.

Formally, there are Ns annotated source samples DS =
{(xsi , ysi )}N

s

i=1 and N t unlabeled target samples DT =
{(xti)}N

t

i=1 (Ns � N t). Unlike the standard UDA task, the
source labels and prediction of text recognition are character
sequences. Thus, the label of the source sample xsi is defined
as ysi = {ysi,1, ysi,2, · · · , ysi,L}, where L is the actual length of
the text sequence. Correspondingly, our task aims to learn a
model that performs well on DT .

3.2 Text Recognition Baseline Model
The baseline model used in our method contains backbone
and decoder modules. In the decoder module, only the
source data is optimized by supervised cross-entropy. For
features F = [f1, f2, · · · , fT ] extracted by the backbone,
firstly, a Seq2Seq attention mechanism is introduced to lo-
cate the specific character features in features F . Therefore,
the representation of features F that are most relevant to the
character yt at time-step t is defined as a context vector gt,

gt =
T∑
i=1

αt,ifi , (1)

where fi is the i-th subregion of featuresF , and the attention
weight αt,i ∈ (0, 1) is calculated as follows,

αt,i =
exp (et,i)∑T
j=1 exp (et,j)

, (2)

where the attention score et,i indicates the correlation of the
decoding character yt with the featureF . The attention score
et,i is defined as,

et,i = ωT tanh (Wsst−1 +WfF + b) , (3)
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where ω, Ws, Wf , and b are trainable parameters, st−1 is
the hidden state of RNN at time-step t-1.

Next, the current hidden state st is updated as follows,

st = RNN (st−1, yt−1, gt) , (4)

where yt−1 is the one-hot encoding of the source label and
the target prediction at time-step t-1.

Then, the probability of the character yt is computed by,

p(yt|x) = softmax (Wost + bo) , (5)

whereWo and bo are trainable parameters of a linear layer.
Lastly, a supervised cross-entropy is adopted to optimize

the source data. For the sample xsi ∈ DS , the cross-entropy
loss is defined as follows,

LCE =
1

Ns

Ns∑
i=1

T∑
t=1

− log p(ysi,t|xsi ) , (6)

where p(ysi,t|xsi ) is the predicted probability of each char-
acter after the softmax function, and Ns is the number of
labeled source data.

4 OUR METHOD

The overall architecture of ProtoUDA is depicted in Fig.
2, which consists of backbone, decoder, fine-grained rep-
resentation module, and the proposed parallel alignment
modules, i.e., class-level and instance-level alignment. Given
the input image x, the backbone first extracts the global
features F = [f1, f2, · · · , fT ] ∈ RT×D , where T is the
maximum decoding length, and D is the feature dimension.
Then, the features are decoded into a text sequence in the
decoder module. During training, the predicted sequence is
optimized by supervised cross-entropy and unsupervised
entropy minimization. Our proposed parallel adaptation
modules are implemented by class-level alignment and
instance-level alignment. In this work, a character is re-
ferred to as an instance. In class-level alignment, character
instances are aligned indirectly through class prototypes,
which operate at the class level. In instance-level alignment,
the optimization is done directly on each character instance
and operates at the instance level. Specifically, the class-level
alignment is performed by reducing the Euclidean distance
between each source prototype and target prototype. The
instance-level alignment is achieved to pull the characters
close to its class mixed prototype while keeping other mixed
prototypes far away. It is worth noting that both alignments
are based on character features; therefore, a fine-grained
representation module is introduced before them.

4.1 Fine-grained Representaion

Both class-level and instance-level alignment are based on
fine-grained character features; therefore, the primary prob-
lem is extracting character features. Following [2], [4], we
define the character feature c as the context vector gt in RNN
decoding process, i.e., c = gt . Since the supervised infor-
mation of the source domain is word-level without explicit
character-level annotation, the character features are based
on pseudo labels. For xsi ∈ DS and xti ∈ DT , we can obtain
ysi = {ysi,1, ysi,t, · · · , ysi,T } and yti = {yti,1, yti,k, · · · , yti,K}

after decoding, where K is the pre-defined maximum de-
coding length for target domain. With word-level source
supervised information, ysi,t is the label of source character
cs, while in the target domain, the pseudo label of the target
character ct is the prediction yti,k. Thus, we can obtain the
character features of source domain C̃s = {(csi , zsi )}M̃i=1,
where zsi = ysi,t, and M̃ is the number of source character
features before feature filter, and the character features of
target domain C̃t = {(cti, zti)}Ñi=1, where zti = yti,k, and Ñ is
the number of target character features before feature filter.

The extracted character features may be inaccurate since
no explicit character-level annotation exists. To mitigate
this problem, we introduce a feature filter mechanism for
filtering out character features with low confidence. We as-
sume that the character feature is relatively distinguishable
with a higher probability. Therefore, we can get the filtered
character features Cs and Ct as follows,

Cs = C̃s � δ(p) , Ct = C̃t � δ(p) , (7)

where � denotes element-wise multiplication, and δ(p) is a
threshold function defined as follows,

δ(p) =

{
1, p(ysi,t|xsi ) ≥ η or p(yti,k|xti) ≥ η
0, otherwise

, (8)

where p(ysi,t|xsi ) and p(yti,k|xti) are the predicted probabil-
ities of each character after the softmax function, and η is
a threshold hyperparameter. It means that the character
feature is retained if the probability exceeds the threshold
η; otherwise, it is discarded.

For the brevity of the following description, we define
the filtered source character features as Cs = {(csi , zsi )}Mi=1

and the target character features as Ct = {(cti, zti)}Ni=1, where
M and N are the numbers of source and target character
features after the feature filter, respectively.

4.2 Class-level Alignment
As mentioned before, class-level alignment is based on the
source and target prototypes. Inspired by TPN, we also
consider there are three types of class prototypes in em-
bedding space: the source prototype µs = {(µse)}Ee=1, the
target prototypes µt = {(µte)}Ee=1, and the mixed prototypes
µst = {(µste )}Ee=1, where E is the number of categories.
The class-level alignment is performed between the source
prototypes µs and the target prototypes µt.

Based on the filtered character features Cs and Ct, the
source and target prototypes are computed separately. For
the e-th character class, the class source prototype µse and
the class target prototype µte are updated as follows,

µse ←
1

2
(µse+

1

|Cse |
∑
cs∈Cse

cs) , µte ←
1

2
(µte+

1

|Cte|
∑
ct∈Cte

ct) , (9)

where Cse and Cte denote the set of e-th class character
features of source and target domains, and |Cse | and |Cte| are
the numbers of e-th class characters of source and target
domains, respectively.

We believe that the more similar the distribution of char-
acter features in the source and target domains, the more
fine-grained domain-invariant features can be extracted.
To reduce the domain discrepancies, we keep the same
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source prototype and target prototype as closely as possible.
Formally, we define class-level alignment as reducing the
Euclidean distance between class prototypes,

LC =
1

E

E∑
e=1

‖µse − µte‖2, (10)

where E is the number of categories. In our task, E is 38,
which contains 10 numbers, 26 case-insensitive letters, a
start symbol [’GO’], and a stop symbol [’S’].

Comparison with MMD. MMD [9] is a kernel method
to compare distributions between the source and target
domains. The empirical estimation of MMD is computed
by,

µs ← 1

|Ds|
∑
xs∈Ds

φ(xs) , µt ← 1

|Dt|
∑
xt∈Dt

φ(xt) , (11)

LMMD = ‖µs − µt‖2, (12)

where xs (xt) is a source (target) sample, |Ds| (|Dt|) is
the number of the source (target) samples, and φ(·) is a
mapping function. We can see the difference by comparing
Eq. 9 and Eq. 11. MMD treats a domain as a whole and
no longer distinguishes instances within a domain. Thus,
a domain could get a prototype. In contrast, we focus on
distinguishing instances within a domain, i.e., generating a
prototype for each category within a domain.

Comparison with TPN. TPN [14] implements general-
purpose domain adaptation based on three types of class
prototypes in an embedding space. It brings three class pro-
totypes close to each other. Differently, we merely consider
the prototypes µs and µt on class-level alignment, whereas
the mixed prototypes µst are employed separately for
instance-level alignment. In addition, TPN addresses non-
sequential adaptation, while ours is sequence-to-sequence
fine-grained domain adaptation.

4.3 Instance-level Alignment
Class-level adaptation aligns from a global perspective,
integrally measuring the source and target domains and
ignoring the character features within a domain. In class-
level adaptation, similar samples interact indirectly, i.e.,
aligned via class prototypes. Therefore, we further achieve
instance-level adaptation.

Compared to the indirect alignment between characters
in class-level adaptation, we would like to learn discrimi-
native fine-grained character representations more directly.
In addition, there is no explicit character-level supervised
information for characters in either the source or target
domains because the supervised information of the source
domain is word-level, and the target domain is without
any supervised information. Therefore, inspired by the su-
periority of contrastive learning in self-supervised visual
representation, we adopt the contrastive learning paradigm
in instance-level adaptation.

To achieve character feature alignment across domains, a
natural idea is that the source character is close to the corre-
sponding target prototype; conversely, the target character
is close to the corresponding source prototype. However,
when the domain discrepancies between the source and
target domains are more obvious, such as synthetic text and

handwritten text, this contrastive way may interfere with
the unique features of the target characters, such as the
stroke characteristics of handwritten text. Thus, we design a
mixed-domain contrastive learning way capable of extract-
ing common features of the source and target domains that
contribute to knowledge transfer without overly interfering
with the unique features of the target characters. Detailed
discussions of the contrastive ways are also provided in
Section 5.3.3.

Formally, given the filtered source character features Cs
and target character features Ct, we combine them to obtain
the mixed character features Cst,

Cst = Cs ∪ Ct, (13)

where ∪ denotes concatenation operation. For the brevity of
the following description, we denote Cst = {(c∗i , z∗i )}M+N

i=1 ,
where c∗i represents a character feature from source or target
domain. For a query character c∗ with its class pseudo-label
z∗, the positive key is its corresponding mixed prototype
µste , and the negative keys are other mixed prototypes. Then,
the instance-level alignment is performed by keeping the
query character c∗ close to its class prototype while away
from other class prototypes, which can be formulated as
follows,

LI = −
1

|Cst|
∑

c∗∈Cst
log

I(z∗ = e) exp (c∗ · µste /τ)∑E
e=1 exp (c

∗ · µste /τ)
, (14)

where |Cst| is the number of character features of the mixed
domain, and τ is a temperature hyperparameter. I(z∗ = e)
= 1 if z∗ is e and I(z∗ = e) = 0 otherwise. · denotes the dot
production used for measuring the similarity between the
character feature c∗ and the mixed prototype µste .

Comparison with InfoNCE. InfoNCE [43] is a represen-
tative contrastive learning function. For an embedding c, the
InfoNCE loss is defined as follows,

LInfoNCE = − log
exp (c · c+/τ)

exp (c · c+/τ) +
∑
c−∈Cc−

exp (c · c−/τ)
,

(15)
where c+ and c− are positive and negative keys. Look-
ing closely at Eq. 14 and Eq. 15, we can observe some
connections. Concretely, the positive and negative pairs of
InfoNCE are constructed between instances. Differently, our
positive and negative pairs are between character instances
and class prototypes, thus playing the role of clustering in
the embedding space. In addition, the label information of
InfoNCE is ground truth, while our class information is the
pseudo label, which is related to our task itself.

Comparison with SeqCLR. SeqCLR [39] is the first to
apply contrastive learning to scene text recognition (STR),
but our method differs from it in two ways. On the one
hand, SeqCLR applied it to STR under a single-domain to
learn visual feature representations. However, our method
extends it to a UDA task for learning domain-invariant
feature representations under cross-domains. On the other
hand, the positive pairs of SeqCLR are constructed based on
the raw sample by strong and weak augmentations, while
ours are the character instance and its class prototype.
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Algorithm 1 The Proposed ProtoUDA Algorithm

Input: Labeled source data DS , unlabeled target data DT ,
coefficients α1, α2, and α3, learning rate β, batchsize B,
the number of categories E, a pre-trained model f .

Output: A text recognition model f parameterized by θ̃f .
1: Initialize the parameters θf by model f , and randomly

initialize the mixed prototypes µst = {(µste )}Ee=1.
2: repeat
3: Sample B minibatch samples to get DSB and DTB .
4: C̃s ← fθf (DSB), C̃t ← fθf (DTB).
5: Feature filter to get Cs and Ct by Eq. 7 and Eq. 8.
6: repeat
7: Get prototype µse and µte by Eq. 9, respectively.
8: until (e = E)
9: Get character features Cst by Eq. 13.

10: θf ← θf − β∂θf (LCE + α1LEM + α2LC + α3LI).
11: µst ← µst − β∂µstLI .
12: until The objective function in Eq. 17 converges.
13: Return the optimized model parameters θ̃f .

4.4 Overall Objective Function

After decoding, the target samples are optimized by
unsupervised entropy minimization. For time step k of
the predicted character yti,k, an entropy value is ob-
tained. Therefore, the entropy of a text sequence yti =
{yti,1, yti,k, · · · , yti,K} is the sum of all time steps. Thus,
the unsupervised entropy minimization loss of the target
domain is defined as follows,

LEM =
1

N t

Nt∑
i=1

K∑
k=1

−p(yti,k|xti) log p(yti,k|xti) , (16)

where p(yti,k|xti) is the predicted probability of each charac-
ter after the softmax function, and N t is the number of target
samples. In our setting, the maximum decoding length K of
the target domain is equal to T of the source domain.

After that, the overall training objective integrates the su-
pervised cross-entropy loss in Eq. 6, unsupervised entropy
minimization loss in Eq. 16, class-level alignment loss in Eq.
10, and instance-level alignment loss in Eq. 14. Hence, we
obtain the following optimization objective,

L = LCE + α1LEM + α2LC + α3LI , (17)

where α1, α2, and α3 are trade-off parameters. With this
overall loss objective, the fine-grained domain-invariant
feature representations can be extracted. The proposed Pro-
toUDA is summarized in Algorithm 1.

5 EXPERIMENTS

To evaluate the performance of our method, we conduct ex-
tensive experiments on benchmark datasets. In this section,
we first describe the datasets and experimental settings.
After that, we give the results of ProtoUDA on different
tasks and compare them with some SOTA methods. To gain
deep insight, we also give ablation results and parameter
analysis. Finally, we further visualize some results.

5.1 Datasets and Experimental Settings

5.1.1 Datasets

We conduct extensive experiments to validate the proposed
ProtoUDA on general benchmark datasets. Synthetic Text
(Syn): Synth90k (MJ) [44] contains 8.9 million images gen-
erated from a set of 90k common English words. SynthText
(ST) [45] contains 5.5 million images with English words.
MJ and ST are generally used for source training set. Real
Scene Text (RST): Seven benchmarks are tested, including
four regular texts (RT), i.e., IIIT5K [46], SVT [47], IC03 [48],
and IC13 [49], and three irregular texts (IT), i.e., SVTP [50],
CUTE80 [51], and IC15 [52]. Handwritten Text: Accord-
ing to standard partition [53], IAM [54]1 is divided into
53841 training words, 8566 validation words, and 17616 test
words, including not only capital and lowercase but also
the common punctuation marks. CVL [55] contains 12289
training words and 84949 test words.

5.1.2 Implementation Details

For fairness of comparison, we adopt the same backbone
and protocols as in [35]. The trade-off parameters, α1, α2

and α3, are set to {1, 0.001, 0.0001} on Syn→RT and Syn→IT
tasks, and {0.1, 0.001, 0.0001} on other tasks. The confidence
threshold η is set to 0.3. The temperature parameter τ is
set to 1. We train the model with Adadelta optimizer with
a learning rate initialized to 0.1. The maximum training
iteration is set as 300k. The maximum decoding length T
and K are set to 25. All experiments are conducted on an
NVIDIA 2080Ti GPU with batch size 48.

5.1.3 Evaluation Metric

To evaluate performance, we adopt the metric of word
accuracy for STR. Moreover, to comprehensively assess the
performance, we introduce an Average score, which is the
accuracy over the union of samples in all test datasets. For
the SOTA comparison in HTR, Word Error Rate (WER) and
Character Error Rate (CER) are employed. CER is defined
as the Levenstein distance between the predicted and real
character sequences of the word.

5.2 Performance Comparison

We evaluate the performance of ProtoUDA on cross-domain
adaptation tasks of synthetic text, real scene text, and hand-
written text. Since the synthetic text is only used for the
training set, the experiment that synthetic text is used as
the target data is not conducted. Further, the real scene
text is divided into regular and irregular. Thus, the tasks
of synthetic text to regular and irregular scene text are con-
ducted. The Baseline model is trained using only the labeled
source data, serving as a pre-trained model for our method.
The Finetune model is finetuned to the Baseline model using
both the labeled source and target data. It should be noted
that we focus on unconstrained text recognition without any
language model or lexicon for fair comparison.

1. https://fki.tic.heia-fr.ch/databases/iam-handwriting-database



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2023 7

TABLE 1
Results of our ProtoUDA on domain adaptation from synthetic text to real scene text compared with SOTA methods, including both regular text

(RT) and irregular text (IT). The ’Baseline’ is only trained on labeled source data. The ’Finetune’ represents fine-tuning the baseline model using
labeled synthetic and real scene text.

Model Reference UDA Labeled Train
Syn→RT Syn→IT

IIIT5K SVT IC03 IC13 SVTP CUTE80 IC15

STAR-Net [56] BMCV2016 N MJ 87.0 86.9 94.4 92.8 - 71.7 76.1
RARE [29] CVPR2016 N MJ 86.2 85.8 93.9 92.6 - 70.4 74.5
CRNN [25] TPAMI2017 N MJ 82.9 81.6 93.1 91.1 - - -
GRCNN [57] NIPS2017 N MJ+PRI 84.2 83.7 93.5 90.9 - - -
Char-Net [58] AAAI2018 N MJ 83.6 84.4 91.5 90.8 - - 60.0
STR2019 [35] ICCV2019 N MJ+ST 87.9 87.5 94.9 93.6 79.2 74.0 77.6
SSDAN [5] CVPR2019 Y MJ+ST 87.6 88.1 94.6 93.8 - 73.9 78.7
ASSDA [4] TIP2021 Y MJ+ST 88.3 88.6 95.5 93.7 - 76.3 78.7
SMILE [6] arXiv2022 Y MJ+ST 89.3 87.6 96.0 94.9 - 75.6 78.9

Baseline ours - MJ+ST 87.40 87.02 95.12 92.88 80.00 74.22 78.08
ProtoUDA ours Y MJ+ST 89.33 89.65 96.05 96.27 80.47 78.75 81.23

Finetune ours N MJ+ST 91.73 91.04 95.35 95.10 81.71 75.26 81.67

5.2.1 Synthetic Text to Regular Scene Text
A domain adaptation from synthetic text to regular scene
text (Syn→RT) is conducted on four regular scene datasets,
i.e., IIIT5K, SVT, IC03, and IC13. The source data is the
synthetic text, MJ and ST, and the target data is unlabeled
regular scene text. Table 1 shows the comparison results
with the SOTA methods. As can be seen:
• Compared with the Baseline model, ProtoUDA signifi-

cantly improves all four datasets. This illustrates that
our method can adequately explore the target samples
without supervised information.

• Compared with the SOTA methods, ASSDA [4] and
SMILE [6], our method achieves the best performance.
It mainly benefits from character-level adaptation, which
can learn fine-grained and domain-invariant features by
class-level and instance-level alignment.

• Compared to Finetune model, ProtoUDA achieves super-
vised training performance on the IC03 and IC13 datasets,
demonstrating the effectiveness of our method.

5.2.2 Synthetic Text to Irregular Scene Text
The adaptation from synthetic text to irregular scene text
(Syn→IT) is conducted on three irregular datasets, i.e., SVTP,
CUTE80, and IC15. The experimental results are shown in
Table 1 in the last three columns. We can observe:
• ProtoUDA is substantially improved compared to the

Baseline model and outperforms the SOTA methods on
three datasets. It performs better than the Finetune model
(78.75% vs. 75.26%) on the CUTE80 dataset.

• The overall performance improvement of ProtoUDA on
irregular scene text is more apparent than that on regular
scene text since irregular text has more variance in appear-
ance, which is hard to generate by synthetic engine [59].
This shows that benefiting the ability of instance-level
alignment to focus on fine-grained character features, Pro-
toUDA can extract domain-invariant character features
under complex background and different illumination.

5.2.3 Synthetic Text to Handwritten Text
Synthetic text is generated based on some characteristics
of real scene text, so there are some similarities between

TABLE 2
Evaluation results on the task from synthetic text to handwritten text. †

denotes the reproduced results based on its open-source code.

Model
Syn→IAM Syn→CVL

WER↓ CER↓ WER↓ CER↓
Base [4], [5] 54.30 28.41 - -
SSDAN [5] 53.65 27.26 - -
ASSDA [4] 43.78 19.96 - -
SMILE† [6] 45.57 19.35 64.63 30.34

Baseline 57.07 30.90 72.28 40.08
ProtoUDA 40.20 16.34 63.27 29.58

Finetune 15.96 6.02 18.41 7.23

these two domains. In contrast, the handwritten text con-
tains unique stroke and fluency characteristics. Thus, the
differences between synthetic text and handwritten text
are more obvious. To test the performance of ProtoUDA
when the source and target domains are widely distributed
differently, we experiment on the task from synthetic text
to handwritten text IAM (Syn→IAM) and CVL (Syn→CVL)
datasets. From Table 2, we can see that:
• Compared to the Baseline model, ProtoUDA achieves

substantial improvements. For instance, on the task of
Syn→IAM, the WER is reduced by 16.87% (from 57.07%
to 40.20%), and the CER is reduced by 14.56% (from
30.90% to 16.34%), respectively. This obvious enhance-
ment demonstrates that domain gaps can be reduced
through class-level and instance-level alignment.

• Compared with the SOTA methods, ProtoUDA achieves
the best performance. We reproduce the SMILE method
and supplement the experiments on IAM and CVL
datasets according to its open-source code. It is observed
that our method achieves better results than SMILE. One
of the main reasons is that our class-level and instance-
level alignment implement an explicit interaction between
the source and target domains.

• There is still a significant performance gap compared to
Finetune model. This illustrates the relatively wide differ-
ence between synthetic and handwritten text distribution
and the necessity to explore a multi-domain text recogni-
tion model.
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TABLE 3
Evaluation results on the task from handwritten text to real scene text (RST). Test‡ represents the result on IAM/CVL test set.

Domain Model Test‡
Regular Scene Text Irregular Scene Text

IIIT5K SVT IC03 IC13 SVTP CUTE80 IC15

IAM→RST
Baseline 80.53 10.63 0.62 10.58 9.80 0.47 1.74 0.83

ProtoUDA - 14.50 2.63 19.77 17.74 1.71 3.48 3.64
Finetune - 72.83 62.13 77.44 76.08 48.68 34.50 57.43

CVL→RST
Baseline 86.51 1.00 0 0.47 0.12 0 0.35 0

ProtoUDA - 11.73 1.55 17.67 16.80 1.09 2.79 2.49
Finetune - 67.83 58.89 70.00 68.73 46.36 32.40 55.00

TABLE 4
Evaluation results of different components on the task from synthetic text to real scene text, including regular scene text and irregular scene text.

Model EM AC AI
Syn→RT Syn→IT

Average
IIIT5K SVT IC03 IC13 SVTP CUTE80 IC15

1. Baseline 7 7 7 87.40 87.02 95.12 92.88 80.00 74.22 78.08 85.63
2. +EM 7 7 89.17 88.90 95.70 94.70 80.59 76.40 80.62 87.20
3. +AC 7 7 88.67 88.10 95.81 93.82 80.47 75.61 79.07 86.67
4. +AI 7 7 88.73 87.94 94.77 94.63 80.16 78.75 78.80 86.68
5. +EM+AC 7 89.27 89.65 96.16 94.87 81.09 78.75 81.23 87.80
6. +EM+AI 7 89.50 89.34 96.05 95.22 80.08 75.96 81.39 87.83
7. ProtoUDA 89.33 89.65 96.05 96.27 80.47 78.75 81.23 87.91

5.2.4 Handwritten Text to Real Scene Text

The adaptation from handwritten text to real scene text is
conducted on IAM and CVL datasets. The Baseline model
is trained only by the labeled training set of IAM/CVL
datasets and serves as a pre-trained model for our method.
The Finetune model is finetuned to Baseline model by the
labeled training set of the IAM/CVL dataset and real scene
text. The experimental results are shown in Table 3. It can be
observed that:
• Compared with the performance of Baseline model on

the IAM/CVL test set, its performance on real scene text
decreases dramatically, which indicates that the Baseline
model is unable to transfer the knowledge learned in the
handwritten text to real scene text.

• Compared with Baseline on real scene text, ProtoUDA
achieves a significant improvement. Although it can
achieve knowledge transfer somewhat, the performance
gap is pronounced compared to Finetune model.

• Jointly considering the ProtoUDA results in Table 2 and
Table 3, we can find that the performance decline from
handwritten text to real scene text is more apparent. This
phenomenon is also demonstrated in [60]. The reason may
be that synthetic text has more generalized features, and
our model can extract useful features for handwritten text
recognition from a large amount of synthetic text.

5.3 Ablation Study

5.3.1 Effect of Each Component

To validate the contributions of each component, i.e., En-
tropy Minimization (EM ), Class-level Alignment (AC ), and
Instance-level Alignment (AI ), we design several variants of
our method, which are indexed from top to bottom in Table
4 and Table 5 as model 1-7. In the experiments, two tasks are
conducted: synthetic text to real scene text and synthetic text
to handwritten text. All the variants in the ablation study

TABLE 5
Evaluation results of different components on the task from synthetic

text to handwritten text.

Model EM AC AI
Syn→IAM Syn→CVL

WER↓ CER↓ WER↓ CER↓
1. Baseline 7 7 7 57.07 30.90 72.28 40.08
2. +EM 7 7 45.57 19.35 64.63 30.34
3. +AC 7 7 54.56 27.88 65.31 33.25
4. +AI 7 7 54.15 27.83 68.43 35.64
5. +EM+AC 7 41.88 17.11 63.87 29.96
6. +EM+AI 7 44.43 18.93 64.53 30.19
7. ProtoUDA 40.20 16.34 63.27 29.58

have the same configurations as used in ProtoUDA. Model-
2, model-3, and model-4 all show improved performance
in average results compared to model-1. Thereinto, entropy
minimization improves the performance most significantly.
Besides, model-5 and model-6 exhibit enhanced behavior
compared to model-2, demonstrating that our proposed
class-level and instance-level alignment can effectively ex-
tract fine-grained domain-invariant character features. Fur-
ther, by simultaneously utilizing entropy minimization,
class-level alignment, and instance-level alignment, the Pro-
toUDA consistently boosts the performance of the two tasks.
These results illustrate the superiority of jointly mitigating
domain discrepancies at the class and instance levels.

5.3.2 Effect of Prototype Generation

The class prototype plays an essential role in the fine-
grained alignment. To explore its effect, we design dif-
ferent ways of generating class prototypes for class-level
and instance-level alignment. The first is based on Eq. 9,
denoted by update, which preserves the class prototype
of the previous minibatch with a certain probability. The
second is that the class prototype is computed entirely from
a minibatch, denoted by get. Formally, the class prototype
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TABLE 6
Evaluation results of different generation ways of class prototypes.

Model
Class-level Instance-level Syn→RT Syn→IT

Average
update get random update get IIIT5k SVT IC03 IC13 SVTP CUTE80 IC15

1. Baseline - - - - - 87.40 87.02 95.12 92.88 80.00 74.22 78.08 85.63

2. +AC
- - - - 88.67 88.10 95.81 93.82 80.47 75.61 79.07 86.67

- - - - 88.20 89.03 96.05 93.82 80.16 77.70 78.74 86.57

3. +AI

- - - - 88.73 87.94 94.77 94.63 80.16 78.75 78.80 86.68
- - - - 88.10 88.87 95.47 94.87 80.78 76.31 78.30 86.47
- - - - 88.37 88.10 95.47 93.93 81.55 76.66 78.30 86.48

4. ProtoUDA

- - - 89.33 89.65 96.05 96.27 80.47 78.75 81.23 87.91
- - - 89.40 89.34 95.93 95.45 81.09 77.35 80.95 87.75
- - - 89.37 88.87 95.70 94.98 80.31 78.05 81.23 87.65

- - - 89.73 89.18 95.93 94.87 81.55 78.05 80.78 87.83
- - - 89.53 89.34 95.70 94.98 81.24 78.40 81.01 87.79
- - - 89.40 90.11 95.35 94.28 80.93 78.05 81.06 87.67

TABLE 7
Results of different contrastive ways of instance-level alignment.

Contrastive Way Syn→RST Syn→IAM
Average WER↓ CER↓

intra-domain 86.31 56.98 29.79
inter-domain 86.49 56.59 29.09

mixed-domain 86.68 54.15 27.83

is the mean value of the same character class features of
the minibatch. The third is to randomly generate class
prototypes of each class to be optimized as model param-
eters, denoted as random, which is designed separately for
instance-level alignment. We conduct experiments on four
variants separately. From Table 6, we can draw that:
• Regardless of which generation way is taken, the perfor-

mance of all variants improves compared to the Baseline
model. This illustrates that the class prototype plays the
role of clustering, which allows the aggregation of similar
characters from the source and target domains.

• Slightly better results are obtained by the combination of
update and random. This mitigates data perturbations to a
certain extent and makes it easier to achieve the global
optimum. Therefore, our method combines update and
random to get the class prototypes.

5.3.3 Effect of Contrastive Way
In the instance-level alignment, the mixed prototypes are
used to perform contrastive learning. In addition, we design
two other ways of source prototypes and target prototypes
for contrastive learning. The first one is intra-domain con-
trastive learning: for source characters, their positive and
negative cases are source prototypes, and for target charac-
ters, their positive and negative cases are target prototypes.
The second is inter-domain contrastive learning: for source
characters, their positive and negative cases are target pro-
totypes; conversely, for target characters, their positive and
negative cases are source prototypes. In order to exclude the
effects of other modules, the experiments are conducted on
model-4 in Tables 4 and 5. From the experimental results
in Table 7, it is clear that the mixed-domain way gives the
best results. This is because the first way does not perform
cross-domain feature alignment. Although the second way

TABLE 8
Evaluation results of different UDA methods.

UDA Methods Syn→RST Syn→IAM
Average WER↓ CER↓

CMMD-TR 86.92 41.88 17.37
CaCo-TR 86.96 41.30 17.54

ProtoUDA 87.91 40.20 16.34

aligns features across domains, it affects the unique features
of the target characters when the domain discrepancies are
more pronounced. In contrast, our way is not only able to
integrate the general features of the source and target data
but also to not interfere unduly with the unique features of
the target data.

5.3.4 Comparison with UDA Methods

To further validate the effectiveness of ProtoUDA, we com-
pare other UDA methods that also consider category in-
formation, CMMD [61] and CaCo [20]. Direct comparison
is not appropriate due to the different tasks. We replicate
these methods and adapt them for deployment on the text
recognition (TR) task, notated as CMMD-TR and CaCo-TR,
respectively. As seen from Table 8, our proposed ProtoUDA
for the text recognition task is optimal. The results are
reasonable. On the one hand, the character features of these
two methods may contain noise. In the original task of these
two methods, explicit category supervised information ex-
ists in the source domain. Whereas in the text recognition
task, there is no explicit character-level category supervised
information in either the source or target domain. Therefore,
we design a low-confidence character filtering mechanism
in the fine-grained representation module, laying the foun-
dation for class-level and instance-level alignment. On the
other hand, the fixed-size category dictionary, the main con-
tribution of CaCo, is not applicable to the text recognition
task. In text recognition, the sampling units are images
containing words, not characters, which does not guarantee
a fixed size for each class key in the dictionary. This can
lead to the underutilization of many character classes, which
prevents effective contrastive learning.
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(a) α1 (Syn→RST) (b) α2 (Syn→RST) (c) α3 (Syn→RST) (d) α1 (Syn→IAM)

Fig. 3. Effect of trade-off parameters on Syn→RST and Syn→IAM tasks.

TABLE 9
Results of proportions on Syn→RT and Syn→IT tasks.

L: U
Syn→RT Syn→IT

Average
IIIT5k SVT IC03 IC13 SVTP CUTE80 IC15

3:1 89.13 89.80 95.81 95.33 82.33 75.96 80.95 87.71
2:1 89.33 89.65 96.05 96.27 80.47 78.75 81.23 87.91
1:1 89.17 88.72 95.12 94.87 82.02 76.66 80.73 87.47
1:2 89.40 88.72 95.47 94.75 80.16 77.70 81.06 87.54
1:3 89.23 88.56 95.12 94.52 80.47 76.31 81.61 87.51

TABLE 10
Results of proportions on Syn→IAM.

L: U
Syn→IAM

WER↓ CER↓
3:1 42.03 17.11
2:1 41.49 17.12
1:1 40.20 16.34
1:2 42.11 17.34
1:3 40.75 16.90

TABLE 11
Results of different τ on Syn→RT and Syn→IT tasks.

Parameter τ
Syn→RT Syn→IT

Average
IIIT5k SVT IC03 IC13 SVTP CUTE80 IC15

0.2 88.40 89.18 95.35 94.75 80.78 76.66 78.36 86.60
0.4 88.13 88.56 95.35 94.28 80.16 76.66 78.74 86.44
0.8 87.43 88.56 95.70 94.98 81.09 77.35 79.46 86.56
1 88.73 87.94 94.77 94.63 80.16 78.75 78.80 86.68
2 88.40 87.94 95.58 94.28 79.85 75.61 78.41 86.38
4 88.27 88.72 95.23 94.52 80.78 75.61 79.24 86.64

TABLE 12
Results of different τ on Syn→IAM task.

Parameter τ
Syn→IAM

WER↓ CER↓
0.2 56.10 29.14
0.4 56.98 29.35
0.8 57.27 30.52
1 54.15 27.83
2 57.35 30.40
4 57.34 30.40

5.4 Algorithm Analysis
5.4.1 Trade-off Parameter Sensitive Analysis
In this section, we perform sensitive analysis of trade-off
parameters, α1, α2, and α3, on Syn→RST and Syn→IAM
tasks. Specifically, we vary α1 ∈ {0.01, 0.1, 1}, α2 ∈
{0.0001, 0.001, 0.01}, and α3 ∈ {0.0001, 0.001, 0.01}. When
studying one parameter, we fix all others with the default
setting mentioned in Section 5.1. As shown in Fig. 3(a),
the performance gradually improves as α1 increases on
the Syn→RST task. Under α1=1, the model achieves better
results when α2=0.001 and α3=0.0001. We apply this optimal
combination of parameters to the Syn→IAM task. However,
as can be seen from Fig. 3(d), the same parameter variation
shows different results on the Syn→IAM task. This illus-
trates that when the feature distributions in the source and
target domains differ significantly, unsupervised entropy
minimization can produce overconfident results, affecting
the stability of the model.

5.4.2 Proportion Parameter of Minibatch
The UDA task aims to transfer the knowledge learned in
labeled to unlabeled data. Thus, each minibatch contains
both labeled and unlabeled images during the training. We
explore different proportions of the number of labeled and
unlabeled images (L: U) in a minibatch from {3:1, 2:1, 1:1,
1:2, 1:3} on Syn→RST and Syn→IAM tasks. From Table 9

(a) WER Results (b) CER Results

Fig. 4. Effect of threshold η on WER and CER on Syn→IAM task.

and Table 10, it can be seen that when the ratio is 2:1 on
Syn→RST task and 1:1 on Syn→IAM task, better results can
be obtained. It can be inferred that configuring the number
of labeled and unlabeled images in this ratio allows for
sufficient information exploration of the source data, which
is beneficial for knowledge transfer.

5.4.3 Temperature Parameter Sensitive Analysis
In instance-level alignment, we adopt contrastive learning
to keep similar characters in the mixed domain close to the
class mixed prototype. Thereinto, a dot production is used to
represent the similarity of a character to its mixed prototype,
where the temperature hyperparameter τ controls the prob-
ability distribution of the similarity. We explore the effect of
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merry (0.9999)

merry
merry (0.9977)
merry (0.9999)

greenstead
greenstead (0.9984)
greenstead (0.9999)

greenstead
greenstead (0.9984)
greenstead (0.9999)

shakeshack
shakeshack (0.9263)
shakeshack (0.9341)

shakeshack
shakeshack (0.9263)
shakeshack (0.9341)

decide
drack (0.2878)
decide (0.9995)

decide
drack (0.2878)
decide (0.9995)

tomorrow
lomorrow (0.3538)
tomorrow (0.5405)

tomorrow
lomorrow (0.3538)
tomorrow (0.5405)

detailed
defeiled (0.4071)
defailed (0.9756)

detailed
defeiled (0.4071)
defailed (0.9756)

Baseline ProtoUDA

Fig. 5. Visualization of attention results and prediction results for Base-
line and ProtoUDA. Above the dotted line are the correct cases, and
below are the false ones. The prediction results are on the right side,
and the numbers in parentheses indicate the confidence: the first row is
the label, the second is the Baseline result, and the third is the ProtoUDA
result. All green indicates true, and red indicates false.

different temperature hyperparameters on the instance-level
alignment. As can be observed from Table 11 and Tabel 12,
better results can be achieved when τ=1.

5.4.4 Threshold Parameter Sensitive Analysis
This section explores the sensitivity of hyperparameter η
in Eq. 8. Parameter η is a threshold that determines which
character features are involved in the alignment. Specifically,
if the confidence is greater than η, the character feature
will participate in class-level and instance-level alignment;
conversely, it is ignored. Overall, if η is larger, only the
character features with higher confidence are involved in
adaptation; conversely, the number of characters used for
adaptation is enlarged. To exclude the effect of entropy
minimization, we conduct experiments on three variants
(model-1, model-3, and model-4 in Table 5) on Syn→IAM
task. Here, we explore the different η from {0, 0.1, 0.3,
0.5, 0.7, 0.9}. The experimental results are shown in Fig.
4. On the one hand, model-3 and model-4 outperform the
Baseline regardless of the threshold η setting, even for the
most stringent feature selection condition of η=0.9. On the
other hand, the relatively best WER and CER are achieved
when η=0.3. Therefore, we finally set the threshold η to 0.3.

5.5 Results Visualization

5.5.1 Visualization of Attention and Prediction Results
We randomly select several text images to visualize the
attention and prediction results. During attention decoding,
the decoding results after the stop symbol [’S’] are ignored.
As can be observed from Fig. 5, on the one hand, our
ProtoUDA can recognize the number of characters more
accurately. For example, Baseline and ProtoUDA predict
’drack’ and ’decide’. The former error prediction ’drack’ is
most intuitively reflected in the attention visualization as a
missing hotspot. On the other hand, ProtoUDA can locate
character features more precisely. Thanks to the ability to
extract high-quality character features, ProtoUDA obtains
more accurate attention results, thus a more precise location.
For example, Baseline and ProtoUDA recognize ’lomorrow’

(a) Baseline (b) ASSDA

(c) ProtoUDA (d) Finetune

Fig. 6. Visualization of target character features on Syn→IAM task.

(a) Baseline (b) ASSDA

(c) ProtoUDA (d) Finetune

Fig. 7. Visualization of source and target character features on
Syn→IAM task.

and ’tomorrow’. The size of hotspots in the former attention
visualization is slightly larger, along with a lower prediction
probability (0.3538 vs. 0.5405).

5.5.2 Visualization of Feature Distribution
To demonstrate the effectiveness of class-level and instance-
level alignment, we perform two visualizations using a t-
SNE tool on the Syn→IAM task. The first is the visualization
of character features. Specifically, a few classes are randomly
selected to visualize the character features in the embedding
space. As shown in Fig. 6, our ProtoUDA can better cluster
similar character features compared to ASSDA [4] and Base-
line model. This is attributed to intra-class aggregation based
on contrastive learning, which draws similar characters
closer together and pulls the different class characters as far
away as possible. The second is the feature visualization of
source and target domains. Concretely, the source and target
domains are viewed as a class separately. As shown in Fig.
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7, our ProtoUDA can blend the character features of the two
domains to mitigate the domain drift problem.

6 CONCLUSION

This paper proposes a novel prototype-based domain adap-
tation method for cross-domain text recognition. Based on
the implicit character features, we implement class-level
and instance-level alignment. This way, the knowledge
learned in the source data can be partly transferred to the
target data, allowing the learning of fine-grained domain-
invariant character features. Extensive cross-domain experi-
ments demonstrate the superiority of ProtoUDA, achieving
SOTA performance on benchmark datasets.
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