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Abstract—Text recognition remains challenging, primarily due
to the scarcity of annotated real data or the hard labor to
annotate large-scale real data. Most existing solutions rely on
synthetic training data, where the synthetic-to-real domain gaps
limit the model performance on real data. Unsupervised domain
adaptation (UDA) methods have been proposed, aiming to obtain
domain-invariant representations. However, they commonly focus
on domain-level alignment, neglecting the fine-grained character
features and thus leading to indistinguishable characters. In
this paper, we propose a simple yet effective self-supervised
UDA framework tailored for cross-domain text recognition,
named TextAdapter, which integrates contrastive learning and
consistency regularization to mitigate domain gaps. Specifically,
a fine-grained feature alignment module based on character
contrastive learning is designed to learn domain-invariant char-
acter representations by category-level alignment. Additionally,
to address the task-agnostic problem in contrastive learning,
i.e., ignoring the sequence semantics, an instance consistency
matching module is proposed to perceive the contextual se-
mantics by matching the prediction consistency among target
data different augmented views. Experimental results on cross-
domain benchmarks demonstrate the effectiveness of our method.
Furthermore, TextAdapter can be embedded in most off-the-shelf
text recognition models with new state-of-the-art performance,
which illustrates the generality of our framework.

Index Terms—Self-supervised learning, Contrastive learning,
Consistency regularization, Domain adaptation, Text recognition.

I. Introduction

TEXT recognition aims to read text from a cropped image,
which involves vision and language modeling [1], [2].

Due to the scarcity of annotated real text or the hard labour to
annotate large-scale real text, current text recognition methods
heavily rely on synthetic training text [3], [4]. Nevertheless,
domain gaps between synthetic and real text are significant,
which limit the model performance on the real text. Therefore,
it is essential to mitigate the domain discrepancy to improve
the recognition performance on real text.

To alleviate the synthetic-to-real gaps, some researchers
use additional and diverse unlabeled real data to improve
performance by semi-supervised learning [5], [6]. Similarly,
some regard it as UDA tasks [7], [8] by transferring knowledge
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learned on labeled source data to unlabeled target data. Al-
though the domain gaps may be partly mitigated, problems still
need to be further considered. It is inappropriate to consider
a domain as a whole, ignoring that the minimal unit of a text
is a character, and character recognition is the prerequisite
for sequence prediction. For example, ASSDA [9] utilizes
global and local (character) features to mitigate domain gaps
based on adversarial learning. Since these methods treat all
the source or target domain characters as a whole and no
longer distinguish character classes within a domain, this way
is called domain-level adaptation. The learned representation
is, therefore, domain-level domain-invariant. Consequently,
due to not considering character category information, this
representation may result in indistinguishable characters, as
shown by the green circles in the Domain-level in Fig. 1(a).
In contrast, category-level adaptation aligns similar characters
across domains, where character class information makes
the learned representations not only domain-invariant but
also category-distinguishable. We refer to this as character-
level fine-grained domain-invariant representations. Therefore,
a specific UDA-based text recognition method that enables
fine-grained domain-invariant representations is much more
valuable.

Owing to the superiority of self-supervised learning, con-
trastive learning-based text recognition methods have been
proposed [5], [10], [11]. Actually, the goal of contrastive
learning of maximizing the similarity between the anchor and
its positives while contrasting the negatives agrees with the
objective of UDA. These contrastive methods split an image
into multiple subwords using a sliding window. As shown in
Fig. 1(b), the different augmentations of the input serve as the
anchor and positives, respectively, while any subword of other
images can be a negative case. This subword-based contrastive
learning has two limitations. First, positive cases from the
same region of different augmentations align the visual infor-
mation but may corrupt the sequence semantics, as a sliding
window may slice a complete character. Second, a wide-range
selection of negative cases may lead to misalignment, as other
images containing the same text are still seen as negative cases
even though they are semantically identical.

Inspired by the above observation, we present a simple yet
effective self-supervised UDA framework for cross-domain
text recognition, termed TextAdapter, which extracts fine-
grained domain-invariant character representations to mitigate
domain gaps. Firstly, a fine-grained feature alignment module
is proposed, which implements character-based contrastive
learning by exploiting the weakly supervised information of
character classes. Specifically, we first apply pseudo-labeling
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Fig. 1. (a) Adaptation of domain-level and category-level, where the green
circles indicate misclassified characters; (b) Contrastive learning of previous
methods, which builds positive and negative cases by a sliding window; and
(c) Contrastive learning of TextAdapter, which is performed on the prototypes
computed by pseudo-labeled characters.

to unlabeled target samples to obtain pseudo-labeled charac-
ters. Then, character-based contrastive learning is performed
by character prototypes computed from pseudo-labeled char-
acters to align the feature distribution of the different domains
at the category level. As illustrated in Fig. 1(c), characters
from the same category in the source and target domains
should be close to the prototype while staying away from
other category prototypes. In other words, the prototype of
that category is a positive case, while different category
prototypes are negative cases. The main difference between our
character-based contrastive learning and subword-based ones
is that our method takes characters, not words or subwords,
as anchors, thus maintaining sequence semantics and avoiding
uncontrollable negative cases.

While character-based contrastive learning is effective for
fine-grained domain-invariant character representations, it ig-
nores the contextual semantics of the text sequence. To address
this, we further propose an instance consistency matching
module that leverages the high-level information of character
prediction logits to perceive sequence semantics effectively.
To achieve this, we preserve model perception ability by
matching the temporal prediction consistency among different
augmented views of target data. Additionally, to improve
the sample utilization and matching quality, we design a
confidence-based sample selection strategy, where only high-
confidence instances are selected for matching.

To summarize, the main contributions are as follows:
• We propose a simple yet effective self-supervised adap-

tation framework dubbed TextAdapter for cross-domain
text recognition. To our knowledge, we are the first
to introduce character-level fine-grained domain-invariant
representations in UDA-based text recognition tasks.

• Considering the sequential nature of the text, we specially
design a fine-grained feature alignment module and an in-
stance consistency matching module to perform category-
level adaptation and perceive the target semantics.

• We deploy TextAdapter to off-the-shelf text recognition

models and conduct experiments on nine widely used
benchmarks. The results show that TextAdapter can fur-
ther improve the performance and achieve new state-of-
the-art (SOTA) results, highlighting the effectiveness and
generality of our framework.

II. RelatedWork

We review the literature on deep learning-based text recog-
nition, unsupervised domain adaptation, domain adaptation for
text recognition, and self-supervised text recognition.

A. Deep Learning-based Text Recognition

Deep learning-based text recognition methods [12], [13]
could be categorized into three types according to the decoding
way, i.e., CTC, attention-RNN, and transformer decoders.
CRNN [14] is a representative CTC decoder method. However,
CTC decoder methods [15], [16] have difficulty recognizing
irregular text. Therefore, attention-RNN decoder methods [17],
[18] have become popular due to their ability to localize
text in images accurately. For instance, SAR [19] employs
2D attention to handle the complicated layout of irregular
text. ASTER [20] utilizes a spatial transform network and
an attention decoder for irregular text recognition. Cheng et
al. [21] focused on the attention drift problem to improve
recognition performance. Recently, some transformer decoder
methods [22], [23] have also been proposed, such as ABI-
Net [24], which explicitly models linguistic rules in scene
text recognition (STR). However, these methods overlook the
domain gaps between synthetic and real text.

B. Unsupervised Domain Adaptation

Most UDA methods [25], [26] can be broadly classified
into domain-level and category-level approaches. Domain-
level UDA methods [27], [28] aims to reduce distribution
differences between the entire source and target domains
by pulling them towards the same distribution. Maximum
mean discrepancy (MMD) [29], [30] and correlation alignment
(CORAL) [31], [32] are commonly used divergence measures.
Category-level UDA methods focus on aligning the distribu-
tions of each category within the domain rather than the entire
domain. This is achieved by pushing the target samples to the
distribution of source samples in each category. For example,
Li et al. [33] achieved category-level alignment through an
adversarial manner between the feature generator and domain-
specific discriminator. Category-level adaptation can extract
more accurate and discriminative representations in the label
space than domain-level adaptation.

C. Domain Adaptation for Text Recognition

Domain adaptation for text recognition can be classified
into two types. The first is the adaptation of different scenes
[7]–[9], where each scene is regarded as a domain. Thus,
there are typically three domains: synthetic text, real scene
text, and handwritten text. For example, Zhang et al. [9]
proposed a seq2seq UDA-based text recognition method that
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Fig. 2. The pipeline of TextAdapter. The Fine-grained Feature Alignment module aligns character features of source and target domains in representation
space. The Instance Consistency Matching module aligns the temporal prediction of target images and their different augmented views in the matching space.
All encoders and decoders share the weights separately.

uses global and local features to extract domain-invariant rep-
resentations. However, it implements domain-level adaptation,
and the domain-invariant representations may not accurately
distinguish characters within the domain. SMILE [7] optimizes
the labeled source and unlabeled target data respectively. Since
the feature distribution is not explicitly aligned, it may perform
poorly when the domain divergence is apparent. The second
type is the adaptation of writing styles between writers in
the handwritten text recognition (HTR) [34], [35], where each
writer is treated as a domain. Since there is variability in the
writing styles of different writers, a generalized representation
of multiple writers can improve the recognition performance
of new writers. For instance, metaHTR [34] treats styles
adaptation as domain generalization, which learns suitable
initialization parameters on multiple authors in a meta-learning
manner with only a few gradient updates on new authors.
However, this approach requires the test data to be visible
during training, which only satisfies bare practical situations.
This paper focuses on the adaptation of different scenes.

D. Self-supervised Text Recognition

More recently, self-supervised methods have been proposed
for STR, e.g., contrastive learning-based methods [11], [36]
and consistency regularization (CR)-based ones. For example,
SeqCLR [10] first applies contrastive learning from non-
sequence tasks to sequence recognition tasks. PerSec [11]
designs a hierarchical contrastive learning framework, which
can simultaneously learn latent representations from low-level
stroke and high-level semantic contextual spaces. DiG [5]
learns discrimination and generation by integrating contrastive
learning and masked image modeling. ConCLR [36] improves

the performance of out-of-vocabulary text by alleviating the
over-reliance on context. In contrast, CR-based methods as-
sume the model should produce consistent predictions when
fed perturbed versions of the same image [37]. For instance,
Zheng et al. [6] proposed a CR-based framework that ad-
dresses character misalignment. SemiMTR [38] is a multi-
modal text recognizer fine-tuned via a sequential, character-
level, and CR between weak and strong augmented views.
However, these self-supervised methods require abundant and
diverse unlabeled real scene text.

III. OurMethod

As shown in Fig. 2, our framework consists of a fine-
grained feature alignment module and an instance consistency
matching module. The proposed method takes the attention-
RNN decoder structure as an example, and it can be deployed
to most STR models based on attention-RNN and transformer
decoders.

In particular, we pseudo-label characters by measuring
model confidence based on character features from the at-
tention module. Then, character-based contrastive learning is
performed on pseudo-labeled character features from different
domains. At the same time, the instance consistency matching
module is constructed to align instances of different augmented
views to encourage model perception ability.

In the following sections, we introduce the notations of
UDA-based text recognition task and the baseline model.
Then, the fine-grained feature alignment and instance consis-
tency matching modules are depicted, respectively. Finally, we
summarize the overall loss.
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Fig. 3. (a) and (b) are examples of anchor, positive, and negative for subword-based contrastive learning. (a) is an example of slicing complete characters,
and (b) is an example of semantic misalignment. (c) is our proposed character-based contrastive learning.

A. Problem Formulation

The UDA-based text recognition task seeks a recognizer
for a target domain when given labeled source data DL =

{(xl
i, y

l
i)}

N l

i=1 as well as unlabeled target data DU = {(xu
i )}N

u

i=1,
where N l and Nu are the numbers of images, respectively.
Since the supervised information of the source domain is
word-level without character-level annotations, the label yl is
defined as yl = {yl

1, y
l
t, · · · , y

l
T }, where T is the pre-defined

decoding length. Our task aims to learn a model that performs
well on target data DU .

B. Baseline Text Recognition Model

The attention-RNN decoder-based baseline model contains
an encoder F , an attentional block, and an RNN decoder
G. For an input x, the encoder F firstly extracts sequence
features F (x) = [ f1, ft, · · · , fT ] ∈ RT×D, where D is the feature
dimension. Then, a sequence-to-sequence attention mechanism
is performed to locate the specific character features in F (x).
At time t, the representation in F (x) most relevant to the
character yt is defined as gt,

gt =

T∑
i=1

αt,i fi , (1)

where fi is the i-th subregion of features F , and αt,i ∈ (0, 1)
is the attention weight,

αt,i =
exp (et,i)∑T

j=1 exp (et, j)
, (2)

et,i = ωT tanh (Wsst−1 +W fF + b) , (3)

where ω, Ws, W f , and b are trainable parameters, and st−1
is the hidden state of RNN at time t − 1.

Next, the RNN decoder G updates the hidden state st,

(ot, st) = G (st−1; [E(yt−1), gt]) , (4)

where E(·) is the character embedding layer.
Then, the decoder computes the output probability of the

predicted character yt via a linear layer and a softmax function,

p(yt |x) = softmax (Wost + bo) , (5)

where Wo and bo are trainable parameters.

Lastly, the baseline model is trained using only the labeled
source data with a standard cross-entropy loss,

LCE(xl, yl) =
1
T

T∑
t=1

− log p(yl
t |x

l) , (6)

where p(yl
t |x

l) is the predicted probability of the output being
yl

t after the softmax, and T is the pre-defined decoding length.

C. Fine-grained Feature Alignment

The representation learned by domain-level adaptation is
globally domain-invariant for the UDA-based text recognition
task since all source or target domain characters are treated as
a whole. Since the class information of fine-grained characters
is not considered, it may lead to the indistinguishability
of characters. We start from the text recognition task and
implement feature alignment at the fine-grained category level,
i.e., character category-level adaptation, to extract fine-grained
domain-invariant representations.

As mentioned, contrastive learning among multiple sub-
words divided by a sliding window has two limitations.
(1) Slicing characters: Due to the immutability of image
character gaps, a fixed sliding window may slice a complete
character and thus corrupt the sequence semantics of this
character, as shown in Fig. 3(a). (2) Semantic misalignment:
Since subwords of any other image can be used as negative
examples, it leads to misalignment of semantics when other
subwords contain the same character content as the anchor.
For example, as shown in Fig. 3(b), the subword containing
‘ON’ is a false negative case such that contrastive optimization
leads to semantic ambiguity, thus resulting in misalignment.
Therefore, we propose character-based contrastive learning to
achieve character category-level adaptation.

1) Pseudo-labeling for Fine-grained Characters: Category-
level adaptation is based on fine-grained character features,
so the primary problem is to extract such features accurately.
Therefore, pseudo-labeling is introduced into the unlabeled
target data, leveraging the prediction capability of a pre-
trained model to generate pseudo-labels for the unlabeled text
sequences. Specifically, a pre-trained model is first warmed
up with the labeled source data, after which an image
xu ∈ DU is fed to the model to obtain the pseudo-label
ỹu = {ỹu

1, ỹ
u
t , · · · , ỹ

u
T }.

Following [9], [36], fine-grained character features are de-
fined as the context vector gt in Eq. 1, denoted by c = gt.
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Since the source labels and target pseudo-labels are word-
level without explicit character-level annotations, the character
features are pseudo-labeled with some uncertainty. To obtain
further accurate character features, a feature filter threshold η is
introduced. The intuition is that if the current character feature
is distinguishable, the probability that it belongs to a specific
character is as high as possible and higher than those of other
characters. In detail, for the label yl = {yl

1, y
l
t, · · · , y

l
T } of xl

and the pseudo-label ỹu = {ỹu
1, ỹ

u
t , · · · , ỹ

u
T } of xu, the pseudo-

labels of the source character feature cl and the target character
feature cu are yl

t and ỹu
t , respectively. Unifying the pseudo-

labels into zl = yl
t and zu = ỹu

t , the fine-grained character
features of the source and target domains after filtering stored
in the character pool are defined as follows,

CL = {(cl
i, z

l
i)|p(zl

i) ≥ η}
Ml

i=1, C
U = {(cu

i , z
u
i )|p(zu

i ) ≥ η}M
u

i=1, (7)

where p(zl
i) or p(zu

i ) is the probability after softmax function,
and Ml or Mu is the number of filtered character features. If
the probability belonging to the source label zl

i or the target
pseudo-label zu

i is above the threshold η, this character feature
is involved in alignment; otherwise, it is discarded.

2) Character-based Contrastive Learning: Given the
pseudo-labeled character features, we argue that each character
class has a corresponding prototype in the feature space.
These prototypes can be calculated by taking the average of
all embedded samples belonging to that class. Thus, there
are three ways to compute prototypes: source-only, target-
only, and source-target domains. This paper calculates the
prototypes from the source-only domain because they can
yield more stable class prototypes. On the one hand, only
the source data contains supervision information, and the
participation of the target data in the prototype generation
may introduce noise; on the other hand, the semantic is cross-
domain in text recognition tasks, i.e., the semantics of the same
characters do not change with synthetic text, scene text, or
handwriting. The related ablation studies are in Section IV-D4.
Formally, the prototype µk of class k is defined as follows,

µk =
1
|CL

k |

∑
cl

i∈C
L
k

cl
i , (8)

where CL
k is the character features of class k in source domain.

Self-supervised contrastive learning is employed to align
the fine-grained source and target domain features. The basic
idea is that similar characters should cluster around their class
prototype while staying away from other class prototypes, as
illustrated in Fig. 3(c). For a character (c∗, z∗) of class k in the
source or target domain, its positive case is the prototype µk,
and its negative cases are the prototypes of the other classes.
The contrastive-based contrastive loss is formulated as follows,

Lcont = −
1

|CL| + |CU |

∑
c∗∈CL∪CU

log
I(z∗ = k) exp(c∗ · µk/τ)∑K

k=1 exp(c∗ · µk/τ)
,

(9)
where I(z∗ = k) is an indicator, K is the number of categories,
and τ is a temperature hyperparamers. ’·’ denotes the dot
production used for measuring the similarity between the
character feature c∗ and the class prototype µk.
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Fig. 4. The left indicates the instance selection based on the entire sequence
confidence. The right is our proposed instance selection strategy based on
character confidence.

This way not only maintains the integrity of characters
by avoiding sliding windows to slice particular characters,
but also mitigates misalignment due to the uncertainty of
negative cases. In addition, category-level adaptation enables
fine-grained character feature alignment, facilitating learning
of fine-grained domain-invariant character representations.

D. Instance Consistency Matching

Text recognition is a sequence task that involves under-
standing the context of the sequence. Still, character-based
contrastive learning only focuses on individual characters
without considering their relationships within the sequence.
To address this limitation, we further propose an instance
consistency matching that employs consistency regularization
to capture the contextual semantics of target data. This module
aims to enhance the ability to perceive and generalize by
ensuring consistent predictions on target data with different
augmentation views.

Consistency regularization was first introduced to STR in
[6]. However, this method filters out noisy characters based
on the entire sequence confidence, which may lead to low
utilization of target samples. For example, as shown in the
left of Fig. 4, a high-confidence character (’b’ and ’m’) in a
low-confidence sequence may be valuable, but it is discarded
due to the low confidence of the entire sequence. Therefore, we
present a simple instance selection strategy based on character
confidence, as illustrated in the right of Fig. 4. Technically, a
probability threshold δ is introduced at each time step to select
high-confidence instances as pseudo labels in our proposed
triple-matching consistency loss.

In addition, to ensure effective matching and better percep-
tion, triple-matching is designed by making consistent model
predictions. Specifically, given a raw target sample xu, two
different augmentation ways are adopted to produce weak
and strong views, denoted as xu

w and xu
s , respectively. After

decoding, the predictions are denoted as ỹu = {ỹu
1, ỹ

u
t , · · · , ỹ

u
T },

ỹu
w = {ỹu

w,1, ỹ
u
w,t, · · · , ỹ

u
w,T }, and ỹu

s = {ỹu
s,1, ỹ

u
s,t, · · · , ỹ

u
s,T }, respec-

tively. Then, triple-matching is performed between the target
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Fig. 5. Visualization of weak and strong augmentations.

data with different augmentation views. The triple-matching
consistency loss is defined as follows,

Lcons(ỹu, ỹu
w, ỹ

u
s) = L(ỹu, ỹu

w) +L(ỹu, ỹu
s) +L(ỹu

w, ỹ
u
s) , (10)

L(ỹu, ỹu
w) =

1
T
∑T

t=1 I(p(ỹu
t |x

u) ≥ δ)Dist(ỹu
t , ỹ

u
w,t) , (11)

L(ỹu, ỹu
s) =

1
T
∑T

t=1 I(p(ỹu
t |x

u) ≥ δ)Dist(ỹu
t , ỹ

u
s,t) , (12)

L(ỹu
w, ỹ

u
s) =

1
T
∑T

t=1 I(p(ỹu
w,t |x

u
w) ≥ δ)Dist(ỹu

w,t, ỹ
u
s,t) , (13)

where I(p(·) ≥ δ) is an indicator, δ is a scalar probability
threshold for filtering out noisy characters, and Dist(a, b) is
a function to measure the discrepancy between a and b. Our
framework adopts a standard cross-entropy as Dist.

The two different augmentation ways are WeakAug and
StrongAug, as defined in [6]. The former includes color jitter,
such as brightness, contrast, and hue changes. The latter
contains color jitter and geometry transformations, except for
cropping, which could potentially alter the sequence seman-
tics. Some augmentation examples are visualized in Fig. 5.

E. Overall Objective Function

The overall objective integrates the cross-entropy loss in
Eq. 6, the character-based contrastive loss in Eq. 9, and the
triple-matching consistency loss in Eq. 10. Hence, we obtain
the following optimization function,

Loverall = LCE + λcontLcont + λconsLcons , (14)

where λcont and λcons are trade-off parameters. With this loss,
TextAdapter can learn fine-grained domain-invariant represen-
tations and perceive the target semantics simultaneously.

IV. Experiments

This section examine TextAdapter on nine datasets. Firstly,
datasets and experimental settings are presented. Then, com-
parison and ablation studies are conducted. Lastly, we show
parameter analysis and visualization results.

A. Datasets

Three types of 11 datasets are used in our task.
Synthetic Text: Synth90k (MJ) [39] contains 8.9 million

images generated from a set of 90k common English words.
SynthText (ST) [40] contains 5.5 million images with English
words. MJ and ST are generally used for the source domain.

Real Scene Text: Seven benchmarks are tested, including
four regular datasets, i.e., IIIT5K [41], SVT [42], IC03 [43],

and IC13 [44], and three irregular datasets, i.e., SVTP [45],
CUTE80 [46], and IC15 [47]. Details of datasets can be found
in the previous work [48].

Handwritten Text: IAM [49] is an English handwritten
text dataset written by 657 writers. According to standard
partition [50], IAM 1 is divided into 53841 training words,
8566 validation words, and 17616 test words. CVL [51] is a
public dataset written by 310 writers for writer retrieval, writer
identification, and word spotting. It contains 12289 training
words and 84949 test words.

B. Experimental Settings

1) Implementation Details: All experiments are conducted
using PyTorch on an NVIDIA GeForce RTX 2080Ti GPU.
We evaluate the effectiveness and generality of TextAdapter
by embedding it into three representative STR models, in-
cluding TRBA [48], Scatter [53], and ABINet [23], following
their original setting. Adadelta optimizer is used during the
adaptation process when training TRBA and Scatter, and Adam
optimizer is used for ABINet. The learning rates are initialized
to 0.1 and 1 for TRBA and Scatter and 0.0001 for ABINet,
respectively. The maximum decoding length T is set to 25, and
the temperature τ is set to 1 empirically. The training iteration
is set to 300k with a batch size 48.

2) Evaluation Metric: Word-level accuracy is adopted for
STR. To comprehensively evaluate the performance, we in-
troduce an average metric Avg. that averages the results over
all samples in seven real scene datasets. Following standard
practice, word error rate (WER) and character error rate (CER)
are reported for HTR.

C. Comparison with SOTAs

We compare our TextAdapter framework with other SOTA
methods, especially self-supervised and UDA-based ones.
Three STR baseline models based on attention-RNN decoder
(TRBA and Scatter) and transformer decoder (ABINet) are
utilized to verify the effectiveness and generality. Specifically,
the fine-grained feature alignment module is embedded in
the semantic features extracted by BiLSTM of TRBA and
Scatter and those extracted by the last iteration of the language
model of ABINet. The instance consistency matching module
is applied directly to the output of TRBA, the last decoder
output of Scatter, and the last iteration output of the alignment
module of ABINet. We also reproduce those STR methods
with the original settings under the same training set for

1https://fki.tic.heia-fr.ch/databases/iam-handwriting-database
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TABLE I
Evaluation results on the adaptation from synthetic to scene text compared with SOTA methods. ’*’ indicates the reproduced results. The numbers in

parentheses denote the amounts, e.g., 100M means 100 million.

Methods Labeled Unlabeled Regular Text Irregular Text Avg.IIIT5K SVT IC03 IC13 SVTP CUTE80 IC15

SO
TA

M
et

ho
ds

CRNN(TPAMI2017) [14] MJ - 82.90 81.60 93.10 91.10 - - - -
GRCNN(NIPS2017) [15] MJ+PRI - 84.20 83.70 93.50 90.90 - - - -
Char-Net(AAAI2018) [52] MJ - 83.60 84.40 91.50 90.80 - - 60.00 -
TRBA(ICCV2019) [48] MJ+ST - 87.90 87.50 94.90 93.60 79.20 74.00 77.60 -
Aster(TPAMI2019) [20] MJ+ST - 93.40 89.50 94.50 - 78.50 79.50 76.10 -
Scatter(CVPR2020) [53] MJ+ST+SA - 93.70 92.70 - - 86.90 87.50 - -
SRN(CVPR2020) [54] MJ+ST - 94.80 91.50 - 95.50 85.10 87.80 82.70 -
ABINet(CVPR2021) [23] MJ+ST - 96.20 93.50 - 97.40 89.30 89.20 86.00 -
TPS++(IJCAI2023) [55] MJ+ST - 96.30 94.30 - 97.80 89.60 89.60 86.50 -
PerSec(AAAI2022) [11] MJ+ST UTI(100M) 88.10 86.80 - 94.20 77.70 72.70 73.60 -
ConCLR(AAAI2022) [36] MJ+ST OutText(1k) 96.50 94.30 - 97.70 89.30 91.30 85.40 -
DiG(MM2022) [5] MJ+ST URD(15.77M) 96.70 94.60 - 96.90 91.00 91.30 87.10
Zheng et al.(CVPR2022)* [6] MJ+ST Real(6.9k) 90.70 91.96 96.16 96.15 86.98 84.72 83.77 -
SSDAN(CVPR2019) [8] MJ+ST Real(6.9k) 87.60 88.10 94.60 93.80 - 73.90 78.70 -
ASSDA(TIP2021) [9] MJ+ST Real(6.9k) 88.30 88.60 95.50 93.70 - 76.30 78.70 -
SMILE(ICIP2022) [7] MJ+ST Real(6.9k) 89.30 87.60 96.00 94.90 - 75.60 78.90 -
DOC(TMM2023) [56] MJ+ST Real(6.9k) 89.00 89.00 95.30 94.30 81.20 77.00 76.00 -
CADA(TCSVT2023) [57] MJ+ST Real(6.9k) 89.30 89.03 95.35 95.10 81.55 78.40 80.12 -

O
ur

s

TRBA* MJ+ST - 87.07 86.86 95.35 92.88 79.69 74.56 77.75 85.43
TRBA-TextAdapter MJ+ST Real(6.9k) 90.67 90.73 96.05 95.68 83.88 81.53 82.17 89.01
Scatter* MJ+ST - 89.47 89.49 96.98 94.40 82.64 77.43 80.34 87.78
Scatter-TextAdapter MJ+ST Real(6.9k) 92.10 91.81 96.16 95.22 84.50 82.29 84.76 90.24
ABINet* MJ+ST - 96.10 93.97 95.93 96.50 89.30 91.67 85.31 92.84
ABINet-TextAdapter MJ+ST Real(6.9k) 96.33 95.05 97.33 98.25 90.54 92.71 87.91 94.07

TABLE II
Results on the adaptation from synthetic text to handwritten text. ’*’

denotes the reproduced results.

Methods
Syn→IAM Syn→CVL

WER↓ CER↓ WER↓ CER↓

SO
TA

SSDAN(CVPR2019) [8] 53.65 27.26 - -
ASSDA(TIP2021) [9] 43.78 19.96 - -
SMILE(ICIP2022)* [7] 45.57 19.35 64.63 30.34
CADA(TCSVT2023) [57] 45.70 19.67 67.34 32.88
DOC(TMM2023) [56] 37.44 16.52 - -

O
ur

s

TRBA* 57.07 30.90 72.28 40.08
TRBA-TextAdapter 25.75 9.76 53.10 23.11
Scatter* 53.72 29.50 71.21 40.40
Scatter-TextAdapter 17.76 7.30 28.28 12.20
ABINet* 46.61 31.44 58.27 38.73
ABINet-TextAdapter 41.39 27.34 51.21 31.26

a fair comparison. As presented in Table I, our reproduced
results, TRBA*, Scatter*, and ABINet*, are comparable or
even higher than those reported in original papers. These
reproduced models serve as pre-trained baseline models for
our framework.

1) Synthetic Text to Scene Text: Since the self-supervised
methods [5], [6], [11], [36] utilize diverse unlabeled real text,
we reproduce [6] as a representation under the same training
set, with the source data being MJ and ST and the target data
being the union of IIIT5K, SVT, IC13, and IC15 training splits,
following common UDA methods [9], [56]. From the results
in Table I, we can observe:
• TRBA-TextAdapter, which uses the same baseline as UDA

methods [7]–[9], [56], [57], shows significant improvement
on all seven datasets. Other UDA-based methods are less

effective due to the indistinguishable character semantics
caused by the domain-level adaptation, especially on irreg-
ular text with complex situations. The performance gains of
TRBA-TextAdapter on irregular text are more pronounced
than those on regular text. Specifically, compared to CADA,
TRBA-TextAdapter achieves gains of 2.33%, 3.13%, and
2.05% on irregular text, while gains of 1.37%, 1.70%,
0.05%, and 0.58% on regular text, respectively. The substan-
tial improvement on irregular text illustrates the ability of
the fine-grained feature alignment to transfer the knowledge
learned on synthetic text to irregular text.

• Our three TextAdapter models outperform the corresponding
non-TextAdapter baseline models on almost all datasets.
Specifically, the average results are improved by 3.58%
(85.43%→ 89.01%), 2.46% (87.78%→90.24%), and 1.23%
(92.84%→94.07%), respectively. However, compared to
Scatter* result on IC03, that of Scatter-TextAdapter de-
creases. We believe this may be possible. Our optimization
objective is global optimality, i.e., better average Avg.. In
the case of global relative optimality, there may be local
non-optimality, i.e., performance degradation of individual
datasets. These improvements in average results highlight
the generality of TextAdapter, further enhancing its perfor-
mance with the benefit of off-the-shelf STR models.

• ABINet-TextAdapter achieves comparable results to SOTA
methods, particularly self-supervised based ones. Although
DiG performs slightly better on IIIT5K (96.70% vs. 96.33%)
and SVTP (91.00% vs. 90.54%), it uses 15.77M private
unlabeled data while we only use 6.9k unlabeled data.
This shows that our self-supervised TextAdapter can extract
distinguishing character features.
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TABLE III
Results of different components on the adaptation to scene text.

Model Lcont Lcons
IIIT5K SVT IC03 IC13

SVTP CUTE80 IC15 Avg.

Baseline 7 7
87.07 86.86 95.35 92.88
79.69 74.56 77.75 85.43

w/o Lcons 3 7
87.47 87.94 95.47 94.82
80.00 77.96 77.80 86.37

w/o Lcont 7 3
90.40 90.57 95.47 95.40
84.03 80.14 82.55 88.60

TextAdapter 3 3
90.67 90.73 96.05 95.68
83.88 81.53 82.17 89.01

TABLE IV
Results of different matching objects on the adaptation to scene text.

Model Matching IIIT5K SVT IC03 IC13

SVTP CUTE80 IC15 Avg.

w/o Lcont

raw-weak 89.67 88.87 95.58 95.01
80.00 78.05 79.57 87.37

raw-strong 90.10 89.18 95.16 94.87
82.95 80.53 81.61 88.11

weak-strong 90.10 89.95 95.47 94.63
82.48 80.49 82.22 88.13

raw-weak-strong 90.40 90.57 95.47 95.40
84.03 80.14 82.55 88.60

2) Synthetic Text to Handwritten Text: We further evaluate
TextAdapter on adapting synthetic text to handwritten text,
where domain gaps are more obvious due to unique stroke
fluency and semantic characteristics of handwritten text. The
source data is MJ and ST, and the target data is the training
set of IAM/CVL dataset. From Table II, we can see that:

• Compared to SOTAs, TRBA-TextAdapter significantly im-
proves the WER and CER on IAM and CVL datasets and
achieves the best results using the same baseline. Specifi-
cally, compared to DOC, the WER and CER are reduced by
11.69% (37.44%→25.75%) and 6.76% (16.52%→9.76%) on
the IAM. This improvement is attributed to the capability
of extracting fine-grained domain-invariant representations
while also enhancing the robustness through its perception
of handwritten-specific semantics.

• Compared to the three non-TextAdapter baselines, our mod-
els are all enhanced. For instance, Scatter-TextAdapter re-
duces the WER and CER of IAM by 35.96% (53.72%
→17.76%) and 22.20% (29.50%→7.30%), respectively. By
utilizing the model originally specialized for STR, Tex-
tAdapter also enhances the performance of HTR.

• Compared to TRBA- and Scatter-, ABINet-TextAdapter
shows only slight improvements. This may be due to the
more apparent semantic discrepancy between synthetic and
handwritten texts. The explicit modeling of the language
model in ABINet may lead to an over-reliance on synthetic
text semantics, limiting its ability to perceive semantics in
a few unlabeled handwritten texts.

TABLE V
Results of different measure functions on the adaptation to scene text.

Model Dist(·) IIIT5K SVT IC03 IC13

SVTP CUTE80 IC15 Avg.

w/o Lcont

Cross-Entropy 90.40 90.57 95.47 95.40
84.03 80.14 82.55 88.60

KL-Divergence 89.17 88.10 95.58 94.63
78.92 77.70 78.13 86.65

TABLE VI
Results of different prototypes and anchors on the adaptation to scene text
of the TextAdapter w/o Lcons. ’src’ and ’tar’ indicate the character

features of the source and target domains. ’aug’ means the weak and strong
augmentations of target character features.

Prototype Anchor IIIT5K SVT IC03 IC13

SVTP CUTE80 IC15 Avg.

src

src 87.93 87.48 95.93 94.40
80.00 77.35 77.86 86.17

tar 87.90 87.79 95.47 94.17
80.31 77.35 77.64 86.09

src+tar 87.47 87.94 95.47 94.82
80.00 77.96 77.80 86.37

tar+aug 88.17 87.48 95.00 94.40
79.38 75.96 77.91 86.07

src+tar+aug 87.83 87.48 95.47 94.17
79.38 76.66 77.80 85.98

src+tar

src 88.17 88.25 94.88 94.28
79.38 77.00 78.63 86.31

tar 88.37 88.25 95.12 94.28
78.92 77.70 78.24 86.31

src+tar 88.37 87.79 95.00 94.52
79.85 77.70 77.58 86.21

tar+aug 88.57 87.33 95.58 94.52
78.61 76.66 78.30 86.33

src+tar+aug 88.13 87.64 95.47 93.93
80.62 77.00 78.58 86.36

D. Ablation Study

Due to the simplicity of the TRBA* baseline, we used it
to perform ablation experiments and analyze the proposed
method. In the following experiments, ’Baseline’ and ’Tex-
tAdapter’ denote TRBA* and TRBA-TextAdapter in Table I.

1) Effect of Each Component: We conduct ablation exper-
iments to analyze the effectiveness of the fine-grained feature
alignment module and instance consistency matching module
by removing the corresponding loss terms Lcont and Lcons.
The baseline is trained only on labeled synthetic text using
the cross-entropy loss. The results in Table III show that
combining both Lcont and Lcons with the baseline leads to a
3.58% average improvement. When only one of the loss terms
is used with the cross-entropy loss, the average performance
improves by 0.94% (+Lcont) or 3.17% (+Lcons). These results
validate the positive effect of the proposed modules.

2) Effect of Matching Objects: The instance consistency
matching module aligns the prediction of unlabeled images
and their weak and strong augmented views. We conduct
experiments of the matching objects to demonstrate the va-
lidity of the triple-matching, which contains raw-weak, raw-
strong, and weak-strong matchings. Table IV shows that the

刘晓倩
高亮
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TABLE VII
Results of TextAdapter deployed to the generative model DiG. ’*’ denotes

the reproduced results.

Model Labeled Unlabeled
IIIT5K SVT IC03 IC13

SVTP CUTE80 IC15 Avg.

DiG [5] MJ+ST URD 96.70 94.60 - 96.90
91.00 91.30 87.10 -

DiG* MJ+ST URD 86.90 94.75 97.21 96.97
92.87 94.10 88.68 90.81

DiG-TextAdapter MJ+ST URD+ 93.27 97.06 97.67 97.55
Real 92.40 95.83 88.85 93.53

Fig. 6. Results of different proportions of labeled and unlabeled images.

raw-weak matching has a slight average boost compared to
the raw-strong and weak-strong matchings, possibly due to
the weaker data diversity of the weak augmentation. Triple-
matching performs better than any single-matching, indicating
a more comprehensive perception of the semantic information.

3) Effect of Measure Functions: One issue in the instance
consistency matching module is whether to match pseudo-
labels or the probability distribution. We test the cross-entropy
and KL-divergence as measure functions. Results in Table V
show that matching pseudo-labels outperforms matching the
probability distribution. The reason may be that the matching
probability distribution of the target images without supervised
information can result in over-matching when feature extrac-
tion is insufficient, thereby affecting performance.

4) Effect of Contrastive Cases: A crucial issue in the
fine-grained feature alignment module is determining which
features can generate robust class prototypes as positive and
negative cases. Since the target domain lacks supervised
information, the class prototypes generation have two options:
source-only (src) and source-target (src+tar). We design sev-
eral anchor ways based on these options. Table VI shows
that when generating class prototypes from the source-only
domain, the model can yield more stable class prototypes.
Thus, contrastive learning could effectively cluster similar
characters while keeping away from other class prototypes.

5) Effect of Minibatch Form: The ratio of labeled to un-
labeled images in a minibatch is essential in determining the
transfer intensity. Therefore, we explore the effect of different
transfer intensities on model performance. As depicted in Fig.
6, using a ratio of 3:1 for labeled and unlabeled images can
result in better knowledge transfer and extracting of domain-
invariant representations.

(a) λcont and λcons (b) η and δ

Fig. 7. Effect of hyperparameters on Avg. results on the synthetic to scene
text task. The experiments of λcont and η are based on TextAdapter w/o Lcons.
The experiments of λcons and δ are based on TextAdapter w/o Lcont .

private private journey journey mamoth mamoth

laugh l_ughnancy Miniic_ heath feath

Fig. 8. Visualization of attention and prediction results of TextAdapter. Italics
indicate ground truth. Green and red colors indicate correct and incorrect
prediction results, respectively.

6) Generality in Generative Models: To further explore
the generality of TextAdapter on the generative paradigm, we
deploy it to a representative generative model DiG based on
its official code, named DiG-TextAdapter. For fairness, we list
the results in the original paper and those we reproduced sep-
arately. From Table VII, it can be seen that some reproduced
results even exceed the results in the original paper. After
deploying TextAdapter, the average result improves by 2.72%
(90.81%→93.53%). This illustrates that TextAdapter can also
facilitate the optimization of generative models.

Extensive ablation experiments show that the carefully
designed sub-modules are individually effective, and collab-
orative efforts promote improved behavior. In addition, Tex-
tAdapter can also further enhance generative methods.

E. Algorithm Analysis

1) Parameter Sensitive Analysis: We analyze the sensitiv-
ity of the hyperparameters, including two trade-off hyperpa-
rameters and two threshold hyperparameters. We vary these
trade-off hyperparameters λcont ∈ {0.0001, 0.001, 0.01} and
λcons ∈ {0.001, 0.01, 0.1}. From Fig. 7(a), we find that the best
performance is achieved when λcont is 0.001 and λcons is 0.1.
For the threshold hyperparameters, we also vary η and δ in
{0, 0.3, 0.6, 0.9}. From Fig. 7(b), we observed that our default
settings of η=0.3 and δ=0.9 are optimal.
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(a) Baseline (b) ASSDA (c) TextAdapter

Fig. 9. Visualization of target domain character features on Syn→IAM task.

(a) Baseline (b) ASSDA (c) TextAdapter

Fig. 10. Visualization of source and target domain character features on
Syn→IAM task.

2) Visualization: To provide insight into the effectiveness
of TextAdapter, we first visualize the attention and prediction
results. As seen from Fig. 8, accurate character localization can
facilitate recognition, as error character localization can result
in sequence length or prediction errors. Additionally, we use
t-SNE to visualize two feature distributions: character features
of the target domain and character features of both the source
and target domains. For the first visualization, we randomly
select several character categories to show. Compared to Fig.
9(a) baseline and Fig. 9(b) ASSDA, TextAdapter presents
a more discriminative distribution of target characters. For
the second visualization, as shown in Fig. 10, TextAdapter
brings the two distributions closer together, making the target
distribution more indistinguishable from the source one. These
results once again validate the effectiveness of TextAdapter.

V. Conclusion
This paper proposes a simple yet effective self-supervised

domain adaptation framework called TextAdapter for cross-
domain text recognition, aimed at bridging the domain gaps
between synthetic text and real text. The framework consists
of a fine-grained feature alignment module and an instance
consistency matching module, which combine to extract fine-
grained domain-invariant character representations. Extensive
experiments on nine benchmarks demonstrate the superiority
and generality of our framework.
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