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Abstract
Multilingual text recognition (MLTR) is increasingly essential for
facilitating cultural communication. However, existing methods
often struggle with retaining previous knowledge when learning
new languages. A straightforward solution is performing incremen-
tal learning (IL) on MLTR tasks. However, it ignores the shared
words and characters across incremental languages, which we first
term as an incremental sharing problem. Motivated by this observa-
tion, we propose aHierArchicalMulti-label learning framework for
Multilingual tExtRecognition, termedHAMMER. An online knowl-
edge analysis is designed to identify shared knowledge and provide
corresponding multi-label language supervision. Specifically, only
words and characters appearing simultaneously in multiple lan-
guages are considered shared knowledge. Additionally, to further
capture language dependencies, we introduce a hierarchical lan-
guage evaluation mechanism to predict language scores at word
and character levels. These scores, supervised by the knowledge
analysis, guide the specific recognizers to effectively utilize both
old and new language knowledge, thereby mitigating catastrophic
forgetting caused by imbalanced rehearsal sets. Extensive experi-
ments conducted on benchmark datasets, MLT17 and MLT19, show
that HAMMER exhibits remarkable results and outperforms other
state-of-the-art approaches.

CCS Concepts
• Computing methodologies→ Computer vision tasks.
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1 Introduction
Scene text recognition (STR) [9, 39, 43] involves reading character
sequences from scene text images and is a challenging task in com-
puter vision. Recent advancements in deep learning have facilitated
the progress of text recognition technology, making it widely appli-
cable in various real-world scenarios such as autonomous driving,
machine translation, and image-text retrieval. However, most exist-
ing methods primarily focus on Latin script [3, 36, 38] and struggle
to handle multilingual scenarios effectively. As cross-cultural com-
munications become more prevalent, there is a growing need for
multilingual text recognition (MLTR) [12, 13, 35]. A robust MLTR
model should be capable of recognizing multiple languages simulta-
neously and continuously learning new languages. Existing MLTR
methods often train a multilingual recognizer by mixing samples
from all languages together [4, 19]. When encountering a new lan-
guage, these methods incorporate the new samples into the original
old data to retrain the recognizer, leading to increased computa-
tional complexity [22, 34] and potential storage constraints.

Incremental learning (IL) [10, 15, 17, 41] is a powerful paradigm
for continuously learning new data while retaining knowledge of
old data. It is promising to yield fine recognizers when incremental
methods are applied toMLTR tasks. However, like some incremental
learning dilemmas, incremental multilingual recognizers also face
the issue of catastrophic forgetting, where the recognizer tends to
forget the old languages while learning new ones.

In incrementalmethods, replay-based ones [5, 23, 30] have shown
promising performance by obtaining a small amount of old data,
referred to as the rehearsal set. Conventional replay-based methods
typically sample old classes uniformly to create a fixed-capacity
rehearsal set. Nevertheless, this operation is not directly applicable
to MLTR tasks. In MLTR, languages are treated as incremental tasks,
and the characters composing each word are considered incremen-
tal classes. Unlike other tasks where classes are sampling units (e.g.,
image classification), in MLTR tasks, the sampling unit is the word
itself, not the character classes. Consequently, there is no guarantee
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Figure 1: Diagram of incremental settings. Colors indicate
incremental tasks. The circle size indicates the number of
incremental classes or instances. The overlap in the MLTR
IL setting indicates character sharing or word sharing.

that the rehearsal set covers all character classes of old languages,
resulting in a rehearsal-imbalance problem [44]. This imbalanced
rehearsal set would exacerbate catastrophic forgetting, significantly
impacting recognition performance in old languages.

Existing replay-based incremental MLTR methods [31, 44] main-
tain awareness of old knowledge by loading corresponding specific
parameters after determining the belonging language class of the
entire words. An inspired work, MRN [44], introduces a multiplexed
routing network that predicts language scores of entire words to
weight the various specific recognizers for decoding character se-
quences. Although these methods alleviate catastrophic forgetting
caused by the imbalanced rehearsal set to some extent, they still
suffer from two limitations. (1) Fine-grained information at the
character level is ignored. A word is composed of multiple char-
acters, and in addition to the whole word, individual characters
also contain valuable information. (2) Shared knowledge among
incremental languages is neglected. In MLTR tasks, defining a sam-
ple as belonging strictly to a specific language is inaccurate since
a sample may appear in multiple languages simultaneously. For
instance, words composed solely of digits belong to both English
and Chinese. Simply assuming these words belong exclusively to
either English or Chinese would lead to knowledge misalignment.
In this paper, we innovatively refer to this phenomenon as the
incremental sharing problem.

Different from the standard IL setting shown in Fig. 1(a), there
is an overlap in the MLTR IL setting depicted in Fig. 1(b). Over-
lap indicates the intersection between the content of incremental
tasks, i.e., incremental sharing, which is mainly manifested in two
aspects: 1) Incremental character classes sharing, where a char-
acter class exists in multiple languages, and 2) Incremental word
instances sharing, where a word instance is present in more than
one language. Particularly, we define words as shared only when
each character of the word appears in multiple identical languages
simultaneously. To demonstrate the incremental sharing problem,
we further conduct a statistical analysis in two popular multilingual
text datasets, MLT17 [20] and MLT19 [19]. As indicated in Table 1,
20%-55% of incremental character classes are shared, and 0.3%-26%
of incremental word instances are shared. Therefore, exploring the
common knowledge between these shared characters and words is
crucial for incremental MLTR tasks.

Table 1: Statistics of characters and words on MLT17 and
MLT19 datasets. Total represents the number of identical
languages in both datasets.

Statistics Task1 Task2 Task3 Task4 Task5 Task6
Chinese Latin Japanese Korean Arabic Bangla

Chars
Total 2086 354 1733 1186 74 113
Shared 0 81 942 274 15 51
Rate 0 0.229 0.544 0.231 0.203 0.451

Words
(train)

Total 5584 100332 9933 11738 7941 6779
Shared 0 13144 2517 1381 20 381
Rate 0 0.131 0.253 0.118 0.003 0.056

Words
(test)

Total 851 16955 1940 1909 1453 1106
Shared 0 2395 500 237 4 53
Rate 0 0.141 0.258 0.124 0.003 0.048

Motivated by the above observation, we propose aHierArchical
Multi-label learning framework for incremental Multilingual tExt
Recognition, named HAMMER. It comprises two stages: specific
language learning and multilingual learning. Initially, the former
stage involves training a specific text recognizer for each incre-
mental language, similar to standard STR models. Subsequently,
in the multilingual learning stage, an online knowledge analysis
module is devised to determine whether samples belong to shared
or new knowledge, providing corresponding multi-labeled and
single-labeled knowledge supervision. Additionally, a hierarchi-
cal language estimation mechanism is proposed to predict language
scores at both the word and character levels using a DomainMLP
that processes character features extracted by the frozen specific
recognizers. These scores, supervised by the knowledge analysis
module, guide both old and new recognizers in decoding character
sequences. By leveraging multi-label learning of shared knowledge
at the word and character levels, our HAMMER framework can
adequately exploit the old and new knowledge, thereby alleviating
catastrophic forgetting stemming from imbalanced rehearsal sets
and enhancing recognition performance.

Our contributions are summarized as follows:
• We first identify the incremental sharing problem specific to
incremental MLTR tasks, which differs from conventional
incremental learning settings.
• An effective incremental MLTR framework, HAMMER, is
proposed, which is able to leverage old knowledge adequately
and mitigate catastrophic forgetting by identifying and learn-
ing shared knowledge at both word and character levels.
• Extensive experiments are conducted on two mainstream
MLTR datasets. The proposed framework gains significant
results and establishes new state-of-the-art (SOTA) ones.

2 Related Work
2.1 Deep Learning-based STR
Mainstream deep learning-based STR methods employ three types
of decoders: CTC [8, 11, 25], RNN [2, 3, 27], and transformer [7,
18, 21, 28, 33] decoders. TRBA [2], for instance, is a representative
STR baseline. ABINet [7] is a transformer-based baseline explicitly
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Figure 2: The pipeline of our HAMMER. Stage 1 involves training specific language recognizers. During incremental multilin-
gual learning for task i, we perform online knowledge analysis at word and character levels to determine whether samples are
shared and provide corresponding multi-label supervision. Then, the hierarchical language estimation predicts the belonging
language scores at word and character levels. These scores guide specific recognizers in predicting character sequences.

exploring language context. Recently, CLIP-based methods [1, 29,
42] have shown promising results on various text tasks.

Multilingual text recognition [12, 19, 20, 35] aims to recognize
multiple languages simultaneously and continuously learn new
languages. Early solutions [44] involve training models on all lan-
guage data together. Alternatively, some methods [13, 31] introduce
an auxiliary language prediction to determine the language class,
and then specific recognizers or private parameters are loaded to
predict character sequences.

2.2 Incremental Learning
Incremental learning [16, 17, 26, 41] is crucial for continuously pro-
cessing new data while retaining previous knowledge, thus over-
coming catastrophic forgetting. Mainstream incremental learning
methods fall into three categories. Regularization-based meth-
ods prevent the overwriting of old knowledge by imposing con-
straints on the loss of new tasks. For instance, LwF [15] ensures
similar predictions between old and new models on new tasks
through knowledge distillation. An improved algorithm, EWC [14],
introduces a generalized parameter constraint method based on
the Bayesian framework, adding an additional parameter regular
loss.Replay-basedmethods retain a representative portion of old
data to review previously learned knowledge. iCaRL [22], for ex-
ample, employs distillation loss to update model parameters while
allowing the use of old data. CLEAR [23] dynamically adjusts the
amount of old data retained, avoiding the linear growth of compu-
tational cost seen in LwF. Expansion-based methods expand a
set of task-specific parameters for each incremental task. PGN [24]
creates a task-specific network and transfers knowledge among

them through horizontal connections. However, as the number of
tasks increases, memory usage grows linearly. To mitigate mem-
ory overhead, DEN [37] and RCL [32] only expand network width
when capacity is insufficient. This paper employs the incremental
learning paradigm to perform MLTR tasks.

3 Our Method
3.1 Problem Definition
Given incremental languages D = {D𝑖 }𝐼𝑖=1, we aim to improve
performance on the current languageD𝑖 andmaintain perception of
old languages D̃𝑖−1 = {D𝑘 }𝑖−1𝑘=1, where D𝑖 = {(𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗 )}𝑁𝑖

𝑗=1 is the
dataset of task 𝑖 , with𝑁𝑖 being the number of training samples. Each
𝑦𝑖, 𝑗 = {𝑦𝑖, 𝑗,1, 𝑦𝑖, 𝑗,2, · · · , 𝑦𝑖, 𝑗,𝑇 } ∈ D𝑖 is a sequence label within the
label set C𝑖 , where 𝑇 denotes the pre-defined maximum decoding
length. The incremental sharing problem identified innovatively by
us differs from conventional incremental learning settings in two
ways: (1) incremental character classes sharing, i.e., C𝑖 ∩ C̃𝑖−1 ≠ ∅,
where C̃𝑖−1 = ∪𝑖−1𝑘=1C𝑘 denote the label space of all character classes
up to task 𝑖-1, and (2) incremental word instances sharing, i.e.,
D𝑖 ∩D̃𝑖−1 ≠ ∅. Due to the presence of shared characters and words,
the replay-based incremental paradigm is naturally chosen for its
access to some of the old data, referred to as the rehearsal setM𝑖 =

𝑠𝑎𝑚𝑝𝑙𝑒𝑟 (D̃𝑖−1), thus facilitating the exploration of dependency
relationships between the old and the new languages.

From the perspective of language classes, these shared charac-
ters and words are multi-labeled due to their presence in multiple
languages. Therefore, multi-label learning is utilized to optimize the
belonging language classes of shared samples. Furthermore, each
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character composing a word contains valuable information besides
the entire word. Consequently, hierarchical analysis at the word
and character levels benefits recognition performance. Based on the
motivations above, we propose a two-stage hierarchical multi-label
learning framework, HAMMER. An overview of the HAMMER is
illustrated in Fig. 2.

3.2 Specific Language Learning
In stage 1, a specific recognizer is trained using the language dataset
D𝑖 corresponding to the task 𝑖 . Specifically, we denote the feature
extractor and classifier as R𝑖 and 𝜑𝑖 , respectively, and P𝑖 as the
predicted probability distribution. Given the (𝑥,𝑦) ∈ D𝑖 , we ob-
tain P𝑖 (𝑥) = 𝜑𝑖 (R𝑖 (𝑥)). The standard cross-entropy loss L𝑐𝑙 𝑓 is
employed to optimize the specific recognizer,

L𝑐𝑙 𝑓 = E(𝑥,𝑦)∼D𝑖

[
𝑇∑
𝑡=1
−𝑦 logP(𝑦𝑡 |𝑥)

]
, (1)

where P(𝑦𝑡 |𝑥) represents the predicted probability of the output
being 𝑦𝑡 at time step t.

3.3 Knowledge Analysis
In MLTR tasks, shared characters and words appear in multiple
incremental languages. As mentioned previously, we term this
phenomenon in MLTR tasks as incremental sharing problem. Thor-
oughly exploring the relationship between shared characters and
words is crucial for enhancing MLTR performance. Due to the lack
of comprehensive belonging language supervision of the shared
characters and words in the original datasets, we first design an
online knowledge analysis to distinguish between new and shared
knowledge. New knowledge refers to characters or words unique
to the current task, whereas shared ones encompass those that
also appear in other task(s). Precisely, as illustrated in Fig. 3(a), we
classify a word instance as shared only where each constituent
character is also present simultaneously in other identical task(s).

Formally, let (𝑥,𝑦) ∈ D𝑖 ∪ M𝑖 denote an image-text pair to
be recognized in incremental task i. Initially, the character mem-
ory is updated dynamically by adding current character classes
C𝑖 to the memory. Then, the character 𝑦𝑡 in the sequence 𝑦 =

{𝑦1, 𝑦2, · · · , 𝑦𝑇 } can be encoded based on its associated language
classes. If its encoding length is 1, the character is new, existing
solely in the current task. Conversely, the character is deemed
shared if the encoding length is greater than 1, indicating multiple
languages. The knowledge type of character 𝑦𝑡 is formulated as,

K(𝑦𝑡 |𝑥) =
{

𝑁𝑒𝑤, 𝑙𝑒𝑛(E(𝑦𝑡 )) = 1
𝑆ℎ𝑎𝑟𝑒𝑑, 𝑙𝑒𝑛(E(𝑦𝑡 )) > 1 , (2)

where E(·) denotes the language encoding, and 𝑙𝑒𝑛(·) is a calculat-
ing length fucntion. A word encoding is obtained by intersecting
the encodings of its constituent characters. Similarly, this word
is new if its encoding length is 1 and shared if it exceeds 1. The
knowledge type of word 𝑦 is formulated as,

K(𝑦 |𝑥) =
{

𝑁𝑒𝑤, 𝑙𝑒𝑛(E(𝑦)) = 1
𝑆ℎ𝑎𝑟𝑒𝑑, 𝑙𝑒𝑛(E(𝑦)) > 1 , (3)

where E(𝑦) = J (E(𝑦1), · · · , E(𝑦𝑇 )). The J (·) is the intersection
of all character encodings. As depicted in Fig. 3(b), if any new
character is present in a word, the word encoding after character
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Figure 3: Illustration of knowledge analysis. (a): each charac-
ter belongs to shared knowledge, and then the word belongs
to shared knowledge. (b): as long as one character belongs to
new knowledge, the word belongs to new knowledge.

intersection must be of length 1, signifying that the word is new.
In essence, a character unique to the current language implies that
the word is also new, which is consistent with our design.

Based on the determined knowledge types, this module also
provides corresponding knowledge supervision. For new knowl-
edge, the supervision labels are one-hot encodings. Multi-label
optimization aligns precisely with the purpose of shared knowl-
edge learning. Thus, multi-label learning is employed for shared
knowledge optimization. It is worth noting that multiple labels re-
quire transformation based on the principles of multi-label learning.
The language class labels of character 𝑦𝑖 and word 𝑦 are defined as,{

N𝑐 (𝑦𝑡 |𝑥) = 𝑂𝑛𝑒𝐻𝑜𝑡 (E(𝑦𝑡 )), K(𝑦𝑡 |𝑥) = 𝑁𝑒𝑤

H𝑐 (𝑦𝑡 |𝑥) = 𝑇𝑟𝑎𝑛𝑠𝑀𝑢𝑙𝑡𝑖 (E(𝑦𝑡 )), K(𝑦𝑡 |𝑥) = 𝑆ℎ𝑎𝑟𝑒𝑑
, (4){

N𝑤 (𝑦 |𝑥) = 𝑂𝑛𝑒𝐻𝑜𝑡 (E(𝑦)), K(𝑦 |𝑥) = 𝑁𝑒𝑤

H𝑤 (𝑦 |𝑥) = 𝑇𝑟𝑎𝑛𝑠𝑀𝑢𝑙𝑡𝑖 (E(𝑦)), K(𝑦 |𝑥) = 𝑆ℎ𝑎𝑟𝑒𝑑
, (5)

where N∗ and H∗ represent the new and shared knowledge la-
bel sets, respectively. The 𝑂𝑛𝑒𝐻𝑜𝑡 (·) is the one-hot encoding, and
𝑇𝑟𝑎𝑛𝑠𝑀𝑢𝑙𝑡𝑖 (·) denotes the multi-label transformation.

3.4 Hierarchical Language Estimation
Replay-based incremental methods alleviate catastrophic forgetting
by preserving a rehearsal set. Typically, this rehearsal set uniformly
selects samples from each incremental class to ensure adequate cov-
erage of all old classes. However, achieving even selection across all
character classes is challenging in incremental MLTR tasks, where
word instances are the sample objects. This selection way may lead
to some old character classes being excluded from the rehearsal set.
This imbalanced rehearsal set may hinder the robust recognition.
Compared to a large number of character classes, language classes
are relatively tiny. Therefore, training a language class predictor
might be feasible for enhancing the performance.

Existing incremental MLTR methods design a language predic-
tor solely at the word level. We argue that word-level prediction
is inadequate for sequential tasks, particularly text recognition.
Firstly, considering the shared words between multiple languages,
it is premature to assume that a word solely belongs to a specific
language. Secondly, judging the language only at the word level
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Figure 4: Detailed architecture of DomainMLP. The Spa-
tial Gating and Channel Gating explore the relationship be-
tween characters extracted by multiple specific recognizers.

disregards the abundant information at the fine-grained character
level. For instance, as shown in Fig. 3(b), if we simply assume the
entire word is Japanese (encoding [3]), the Japanese recognizer will
be favored, disregarding that the first and second characters belong
to both Chinese and Japanese (encoding [1, 3]), which results in
under-utilization of the feature extraction capability of the Chinese
recognizer. Therefore, it is essential to analyze the language classes
of each character in addition to those of the entire word.

To achieve this, we introduce a hierarchical language estimation
to analyze the belonging languages of words and characters, re-
spectively. Technically, the features {R1 (𝑥), · · · ,R𝑖 (𝑥)} extracted
by the frozen specific recognizers are simultaneously fed into a
DomainMLP. The architecture of the DomainMLP is detailed in
Fig. 4. By capturing the latent correlation between features in both
spatial and channel dimensions, the DomainMLP predicts the word
score S𝑤 (𝑥) ∈ R1×𝑖 and the character score S𝑐 (𝑥) ∈ R𝑇×𝑖 , where
𝑇 is the maximum decoding length. These scores are optimized by
cross-entropy loss L𝐶𝐸 for new knowledge and multi-label loss
L𝑚𝑢𝑙 for shared ones. Thus, we define the mixed loss L𝑚𝑖𝑥 as,

L∗𝑚𝑖𝑥 = L∗𝐶𝐸 + L
∗
𝑚𝑢𝑙

, (6)

L∗𝐶𝐸 = E𝑥∼D𝑖∪M𝑖

[
−N∗ (𝑥) logS∗ (𝑥)

]
, (7)

L∗
𝑚𝑢𝑙

= E𝑥∼D𝑖∪M𝑖

[∑
𝑚,𝑛

max(0, 1 − (S∗ [H∗ [𝑚]] − S∗ [𝑛]))
S∗ (𝑥).𝑠𝑖𝑧𝑒 (−1)

]
,

(8)
where ∗ = {𝑤, 𝑐}, denoting word and character levels. N∗ andH∗
represent language class labels for the new and shared knowledge
obtained from Eq. 4 and Eq. 5. In addition to being supervised by
the knowledge analysis module, these language scores also serve
as guidance for the specific recognizers trained in stage 1.

3.5 Unified and Specific Guided Predictions
The initial probabilities of specific recognizers can be considered
generalizations to other languages. Typically, a specific recognizer

performs better on words or characters seen in their own languages
but worse on unseen ones. Given the shared words and characters,
there may be multiple specific recognizers with better generaliza-
tion rather than just one. Fully leveraging the feature extraction
capabilities of these recognizers and mining the dependencies be-
tween languages to collaborate on recognition are crucial. Conse-
quently, based on the language scores from the DomainMLP, we
propose unified guided prediction for word level and specific guided
prediction for character level. The unified indicates that all charac-
ters within a word have the same weight to recognizers, while the
specific indicates that the attention weight varies among characters.

More formally, given (𝑥,𝑦) ∈ D𝑖 ∪M𝑖 , we obtain a set of initial
probabilities {P1 (𝑥) ∈ R𝑇×C1 , · · · ,P𝑖 (𝑥) ∈ R𝑇×C𝑖 }. These proba-
bilities are padded with zeros to align with the dimensions C̃𝑖 of
the union of all classes, denoted as C̃𝑖 = ∪𝑖𝑘=1C𝑘 . Thus, the aligned
probabilities become {P1 (𝑥) ∈ R𝑇×C̃𝑖 , · · · ,P𝑖 (𝑥) ∈ R𝑇×C̃𝑖 }. Then,
the word-level probability P̃𝑤 (𝑥) after being guided by the word
score S𝑤 (𝑥) ∈ R1×𝑖 in unified guided prediction is,

P̃𝑤 (𝑥) =
𝑖∑

𝑘=1
(P𝑘 (𝑥) × S𝑤𝑘 (𝑥)) . (9)

Similarily, the guided character-level probability P̃𝑐 (𝑥) by the
character score S𝑐 (𝑥) ∈ R𝑇×𝑖 in specific guided prediction is,

P̃𝑐,(𝑡 ) (𝑥) =
𝑖∑

𝑘=1
(P (𝑡 )

𝑘
(𝑥) × S𝑐,(𝑡 )

𝑘
(𝑥)) , (10)

where superscript (t) indicates the operation is performed at each
time step t. In essence, both Eq. 9 and Eq. 10 employ a soft voting
way to obtain the final guided probabilities. More discussion about
the voting mechanism is provided in Sec. 4.3.2.

These guided probabilities are optimized using standard cross-
entropy to enhance recognition performance,

L𝑤
𝑐𝑙 𝑓

= E(𝑥,𝑦)∼D𝑖∪M𝑖

[
𝑇∑
𝑡=1
−𝑦 log P̃𝑤 (𝑦𝑡 |𝑥)

]
, (11)

L𝑐
𝑐𝑙 𝑓

= E(𝑥,𝑦)∼D𝑖∪M𝑖

[
𝑇∑
𝑡=1
−𝑦 log P̃𝑐 (𝑦𝑡 |𝑥)

]
, (12)

where P̃𝑤 (𝑦𝑡 |𝑥) and P̃𝑐 (𝑦𝑡 |𝑥) represent the word and character
probabilities of the output being 𝑦𝑡 at time step 𝑡 , respectively.

3.6 Total Training Loss
As shown in Eq. 1, only L𝑐𝑙 𝑓 is used to optimize the specific lan-
guage learning in stage 1. In stage 2, the loss comprises two com-
ponents: the classification loss, L𝑤

𝑐𝑙 𝑓
and L𝑐

𝑐𝑙 𝑓
, and the language

prediction loss, L𝑤
𝑚𝑖𝑥

and L𝑐
𝑚𝑖𝑥

. Therefore, the total training loss
in the multilingual learning stage is defined as,

L = L𝑤
𝑐𝑙 𝑓
+ L𝑐

𝑐𝑙 𝑓
+ 𝜆 (L𝑤

𝑚𝑖𝑥 + L
𝑐
𝑚𝑖𝑥 ) , (13)

where 𝜆 is a trade-off parameter.
To better illustrate the training process of stage 2, the pseudo-

code is summarized in Algorithm 1.
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Algorithm 1: Multi-Language Learning in Stage 2
Input: incremental task ID i, dataset D𝑖 , label set C𝑖 , the

specifc recognizers {R𝑘 , 𝜑𝑘 }𝑖𝑘=1 trained in stage 1,
the size of rehearsal set M.

Output: DomainMLP parameterized by 𝜃𝑚𝑙𝑝 .
1 // Construct rehearsal set
2 for 𝑘 ← 1 to 𝑖 − 2 do
3 // 𝑆𝑎𝑚𝑝𝑙𝑒𝑟 (𝑎, 𝑏): randomly select b samples from set a
4 DM𝑖

𝑘
= 𝑆𝑎𝑚𝑝𝑙𝑒𝑟 (DM𝑖−1

𝑘
, 𝑀
𝑖−1 )

5 M𝑖 ← 𝐴𝑑𝑑 (DM𝑖

𝑘
)

6 end
7 DM𝑖

𝑖−1 = 𝑆𝑎𝑚𝑝𝑙𝑒𝑟 (D𝑖−1, 𝑀
𝑖−1 )

8 M𝑖 ← 𝐴𝑑𝑑 (DM𝑖

𝑖−1 )
9 while not at the end of training do
10 // Knowledge Analysis
11 Update Character Memory: 𝐴𝑑𝑑 (C𝑖 )
12 N𝑐 ,H𝑐 = 𝐶ℎ𝑎𝑟𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (D𝑖 ∪M𝑖 )
13 N𝑤 ,H𝑤 =𝑊𝑜𝑟𝑑𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (D𝑖 ∪M𝑖 )
14 // Hierarchical Language Estimation
15 S𝑤 ,S𝑐 = 𝐷𝑜𝑚𝑎𝑖𝑛𝑀𝐿𝑃 (D𝑖 ∪M𝑖 )
16 Compute L𝑤

𝑚𝑖𝑥
(S𝑤 ,N𝑤 ,H𝑤) by Eq. 6

17 Compute L𝑐
𝑚𝑖𝑥
(S𝑐 ,N𝑐 ,H𝑐 ) by Eq. 6

18 // Unified and Specifc Guided Prediction
19 Get P̃𝑤 by Eq. 9
20 Get P̃𝑐 by Eq. 10
21 Compute L𝑤

𝑐𝑙 𝑓
by Eq. 11

22 Compute L𝑐
𝑐𝑙 𝑓

by Eq. 12
23 // Compute Total Loss
24 Compute L = L𝑤

𝑐𝑙 𝑓
+ L𝑐

𝑐𝑙 𝑓
+ 𝜆 (L𝑤

𝑚𝑖𝑥
+ L𝑐

𝑚𝑖𝑥
)

25 UpdateParams (L, 𝜃𝑚𝑙𝑝 )
26 end
27 Return optimized parameters 𝜃𝑚𝑙𝑝 .

4 Experiments and Results
4.1 Datasets and Implementation Details
Datasets: Current mainstream MLTR datasets are MLT17 [20] and
MLT19 [19].MLT17 is a natural scene dataset with blur, occlusion,
and distortion challenges. It comprises 6 scripts: Chinese, Latin,
Japanese, Korean, Arabic, and Bangla, totaling 68,613 training and
16,255 test instances. We divide the scripts into 6 incremental tasks.
MLT19 is another real scene dataset containing 7 scripts totaling
89,177 instances. To maintain consistency with MLT17, we exclude
the Hindi script. Consequently, we divide the remaining 6 scripts
into 6 incremental tasks. The statistics of the combined samples are
presented in Table 1.

Implementation Details: Three representative STR methods
with different decoding ways, CRNN [25], SVTR [6], and TRBA [2],
are selected to deploy our framework. The default parameters are
kept consistent with those in the original papers. The size of the
rehearsal setM is set to 2,000, and the decoding length T is set to 25.
Stages 1 and 2 are trained for 20,000 iterations with a batch size of

128. To ensure a fair comparison, we set the default incremental or-
der as Chinese→Latin→Japanese→Korean→Arabic→Bangla. All
experiments are conducted using PyTorch on two NVIDIA GeForce
RTX 2080Ti GPUs.

4.2 Comparison with SOTAs
We conduct a comprehensive comparison between our proposed
HAMMER and other incremental methods. Similar to MRN [44],
we deploy HAMMER on three STR methods with different de-
coding ways: CTC-based CRNN [25], RNN-based TRBA [2], and
transformer-based SVTR [6]. Specifically, we utilize the output
before CTC of CRNN, the output of TRBA after attention, and
the output of the penultimate layer of the transformer decoder of
SVTR as character features, respectively. Meanwhile, four popular
IL methods, i.e., LwF [15], EWC [14], WA[40], and DER [34], are
chosen to perform MLTR tasks, where the recognition results are
derived from MRN. We establish an UpperBound model trained on
all samples, representing the performance upper limit of our task.
The Baseline model is trained solely on the current task without
any incremental optimization and is tested directly on both old
and new tasks. The results of task i (i>1) represent the average
performance over both old and new tasks. The results of task 1
solely indicate the recognition ability of the current STR models
(CRNN, SVTR, and TRBA) and cannot be used as an indicator to
evaluate the incremental method. The AVG results represent the
average performance across all tasks. The experimental results are
summarized in Table 2, demonstrating that:
• The poor performance of the baseline model highlights signifi-
cant differences in incremental languages. Consequently, models
trained solely on new tasks experience degradation when tested
on old tasks, leading to low average results.
• The sub-optimal results of CRNN-based HAMMER in task 2 may
be attributed to insufficient discrimination in character features
between old and new tasks, mainly when the number of incre-
mental tasks is small. However, as the number of tasks increases,
HAMMER effectively handles incremental sharing between old
and new tasks, improving average performance.
• HAMMERs, deployed across the three STR methods, exhibit sub-
stantial improvement compared to other incremental methods.
Stage 1 enables the exploration of specific knowledge within
each language, while stage 2 delves into incremental sharing
between languages. This cooperation facilitates deeper mining
of old knowledge, thereby mitigating catastrophic forgetting.

4.3 Ablation Study
Due to the effectiveness of TRBA architecture, it is selected to
perform ablation experiments. For brevity, only the results for Task6
and AVG are provided in the following experimental analysis unless
otherwise specified.

4.3.1 Effect of Each Component. Some experiments are conducted
to validate the effectiveness of each module. The results are sum-
marized in Table 3. We design several variants of HAMMER, in-
dexed from top to bottom as 1-7.Word-level and Char-level indicate
whether the language evaluation module predicts language scores
at the word and character levels, respectively. New denotes con-
sidering all words and characters as new knowledge, optimized
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Table 2: Comparison of our proposed HAMMER and existing SOTA methods on incremental MLTR tasks.

Methods
MLT17 MLT19

Task1 Task2 Task3 Task4 Task5 Task6 AVG Task1 Task2 Task3 Task4 Task5 Task6 AVGChinese Latin Japanese Korean Arabic Bangla Chinese Latin Japanese Korean Arabic Bangla

CR
N
N
[2
5]

UpperBound - - - - - - 92.10 - - - - - - 84.90
Baseline [44] 91.10 51.70 51.00 37.20 29.30 22.30 47.10 85.10 49.60 46.50 35.50 27.60 20.70 44.20
Baseline(Ours) 91.12 43.52 25.71 23.84 20.87 15.89 36.83 85.09 39.24 25.07 22.31 19.95 13.91 34.26

LwF(TPAMI2017) [15] 91.10 53.70 53.40 38.20 29.70 23.70 48.30 85.10 51.60 49.20 36.50 27.70 22.00 45.30
EWC(PNAS2017) [14] 91.10 56.50 50.40 37.20 30.50 21.50 47.90 85.10 55.50 46.30 35.80 28.80 19.90 45.20
WA(CVPR2020) [40] 91.10 54.60 48.70 38.20 28.50 23.10 47.40 85.10 52.20 44.30 36.70 26.80 21.60 44.40
DER(CVPR2021) [34] 91.10 76.30 55.80 46.40 39.30 35.80 57.50 85.10 75.20 40.40 45.10 36.60 34.20 52.80
MRN(ICCV2023) [44] 91.10 88.60 77.20 73.70 69.80 69.80 78.40 85.10 85.10 73.20 68.30 65.30 65.50 73.70
HAMMER(Ours) 91.12 87.97 79.26 76.56 76.16 74.78 80.98 85.09 84.04 75.31 71.28 71.34 70.31 76.23

SV
TR

[6
]

UpperBound - - - - - - 90.10 - - - - - - 83.20
Baseline [44] 90.60 32.50 40.50 30.80 24.50 19.90 39.80 84.80 31.30 37.00 29.20 22.60 19.10 37.30
Baseline(Ours) 91.12 51.52 29.26 22.15 18.26 14.38 37.78 85.09 51.68 28.33 21.11 16.42 13.72 36.06

LwF(TPAMI2017) [15] 90.60 28.00 38.40 29.90 24.10 18.30 38.20 84.80 27.00 34.60 28.40 22.30 17.00 35.70
EWC(PNAS2017) [14] 90.60 33.00 41.20 31.10 24.60 20.00 40.10 84.80 31.30 37.70 29.50 22.60 19.00 37.50
WA(CVPR2020) [40] 90.60 28.00 37.90 30.40 24.80 19.80 38.60 84.80 27.70 34.60 28.30 22.60 18.60 35.90
DER(CVPR2021) [34] 90.60 74.50 55.70 55.00 49.50 45.70 61.80 84.80 71.60 52.90 52.20 46.60 43.60 58.60
MRN(ICCV2023) [44] 90.60 86.40 73.90 65.60 63.40 58.10 73.00 84.80 83.70 69.40 64.40 57.80 53.10 68.90
HAMMER(Ours) 91.12 89.13 77.45 71.32 70.54 69.54 78.18 85.09 86.01 72.96 69.89 66.57 65.90 74.40

TR
BA

[2
]

UpperBound - - - - - - 94.90 - - - - - - 90.50
Baseline [44] 91.30 49.60 47.30 36.10 28.60 24.00 46.10 85.40 49.40 44.40 34.80 27.40 23.10 44.00
Baseline(Ours) 90.93 33.52 32.66 28.45 22.48 14.45 37.08 85.09 33.13 32.40 27.10 19.13 12.84 34.95

LwF(TPAMI2017) [15] 91.30 55.70 38.80 28.70 22.60 18.70 42.60 85.40 54.20 35.00 27.20 20.50 17.00 39.90
EWC(PNAS2017)[14] 91.30 50.40 43.60 33.10 25.60 21.90 44.30 85.40 49.40 40.60 31.70 24.80 20.60 42.10
WA(CVPR2020) [40] 91.30 45.40 41.80 30.70 23.50 19.60 42.10 85.40 44.00 37.90 29.20 21.60 18.10 39.40
DER(CVPR2021) [34] 91.30 60.10 53.00 38.80 31.40 28.60 50.50 85.40 60.70 50.30 37.20 30.30 28.10 48.70
MRN(ICCV2023) [44] 91.30 87.90 75.80 72.20 71.50 68.70 77.90 85.40 84.50 73.20 67.80 66.70 64.80 73.70
HAMMER(Ours) 90.93 89.02 80.62 78.92 78.37 77.75 82.60 85.09 86.34 76.56 74.45 73.65 73.10 78.20

using standard cross-entropy, i.e., without considering incremen-
tal sharing situations. Shared indicates optimizing shared words
and characters using multi-label loss. The baseline model (index-1)
yields a relatively low average performance of 37.08% on MLT17
and 34.95% on MLT19. Comparing index-2, 3 and index-4, 5, we can
see that predicting the belonging language scores only at the word
level and only at the character level can improve the average perfor-
mance, demonstrating the necessity of analyzing characters in text
recognition tasks. Analyzing shared words (index-3) and shared
characters (index-5) can facilitate mining the dependencies between
the old and the new language, thus minimizing the catastrophic
forgetting of the old language, as observed when comparing index-2
with index-3 and index-4 with index-5. Ultimately, the HAMMER
(index-7) performance is further improved when all the proposed
sub-modules are optimized.

4.3.2 Effect of Voting Ways. In both the unified and specific guided
prediction modules, a soft voting mechanism is employed to guide
the final prediction. Soft voting involves using language scores as
weights for individual text recognizers, which are then weighted
and summed to obtain the final output. We also test the impact of

Table 3: Evaluation results of different components.

Index Word-level Char-level MLT17 MLT19
New Shared New Shared Task6 AVG Task6 AVG

1 ✗ ✗ ✗ ✗ 14.45 37.08 12.84 34.95
2 ✓ ✗ ✗ ✗ 73.69 80.48 69.08 75.87
3 ✓ ✓ ✗ ✗ 73.42 80.97 69.67 76.37
4 ✗ ✗ ✓ ✗ 76.33 81.94 70.66 77.00
5 ✗ ✗ ✓ ✓ 76.68 82.04 70.27 77.23
6 ✓ ✗ ✓ ✗ 75.45 82.00 71.61 77.41
7 ✓ ✓ ✓ ✓ 77.75 82.60 73.10 78.20

hard voting on model performance, where the class with the largest
probability of the DomainMLP output is taken as an indicator to
select the corresponding specific recognizer. From Table 4, it can be
observed that on MLT17 and MLT19, the results using soft voting
at the word and char levels are much better than those using hard
voting. Hard voting assumes that a word or a character belongs to
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(a) Forgetting rate on MLT17 (b) Forgetting rate on MLT19 (c) Task 1 results on MLT17 (d) Task 1 results on MLT19

Figure 5: (a)(b) Forgetting rates of all tasks on MLT17 and MLT19. (c)(d) Results of initial task (task 1) on MLT17 and MLT19.

Table 4: Evaluation results for different voting ways.

Word-level Char-level MLT17 MLT19
Task6 AVG Task6 AVG

Hard Hard 60.17 67.87 57.51 64.51
Soft 73.34 81.01 69.21 76.44

Soft Hard 72.90 80.55 69.14 76.00
Soft 77.75 82.60 73.10 78.20

Table 5: Evaluation results for different inference ways.

Inference MLT17 MLT19
Task6 AVG Task6 AVG

Unified 77.75 82.60 73.10 78.20
Specific 60.77 74.32 58.29 70.97
Weighted 74.67 81.95 70.68 77.77

a specific language, which contradicts multi-label optimization, re-
sulting in poor performance. In contrast, the soft voting mechanism
is consistent with the idea of multi-label optimization. It allows
for exploring dependencies between the old and the new language,
mitigating catastrophic forgetting the most.

4.3.3 Effect of Inference Output. During training, the unified and
the specific guided prediction modules make predictions. In the
inference process, it is crucial to determine which prediction should
be chosen as the final output. We test three output strategies: the
output guided by the word scores Unified, the output guided by
the character scores Specific, and the output weighted by the word
and character scores Weighted. As shown in Table 5, the Unified
way consistently yields superior results in the inference process.
Therefore, we opt to utilize predictions guided by word scores as
the final output.

4.3.4 Effect of Incremental Order. In addition to the default incre-
mental order O1, we design two alternative incremental orders
based on the number of training samples. O2 and O3 arrange the
languages in the order of training samples from more to less and
from less to more, respectively. The experimental results in Table
6 demonstrate that the choice of incremental order significantly
influences the recognition performance. This observation under-
scores the importance of carefully selecting the incremental order,

Table 6: Evaluation results for different incremental orders.

Task1 Task2 Task3 Task4 Task5 Task6 Results
O1 Chinese Latin Japanese Korean Arabic Bangla AVG

MLT17 90.93 89.02 80.62 78.92 78.37 77.75 82.60
MLT19 85.09 86.34 76.56 74.45 73.65 73.10 78.20
O2 Latin Korean Japanese Arabic Bangla Chinese AVG

MLT17 94.26 90.25 84.76 84.84 81.56 74.33 85.00
MLT19 92.83 86.58 79.37 80.21 77.03 70.55 81.09
O3 Chinese Bangla Arabic Japanese Korean Latin AVG

MLT17 90.93 87.38 85.08 76.50 73.05 74.84 81.27
MLT19 85.09 81.03 80.39 73.00 68.03 70.66 76.37

considering factors such as shared words and shared characters to
optimize the overall performance.

4.4 Algorithm Analysis
4.4.1 Analysis of Forgetting Rate. The forgetting rate is a crucial
performance measure for incremental learning methods. A lower
forgetting rate indicates better retention of old knowledge by the
model. We compute the forgetting rates for all MRN tasks based on
the official code, denoted as MRN*. As illustrated in Fig. 5(a) and
5(b), our HAMMER exhibits a significantly lower forgetting rate
than Baseline and MRN*. Furthermore, we statistically analyze the
recognition accuracy for the initial task (task 1) during the incre-
mental process, as shown in Fig. 5(c) and 5(d). The performance
of Baseline on task 1 drops significantly when learning task 2, pri-
marily due to the minimal shared knowledge between Latin (task
2) and Chinese (task 1), resulting in the failure to recognize Chi-
nese. In contrast, our HAMMER exhibits the slowest degradation
on the initial task, which can be attributed to the exploration of
shared knowledge, enabling the mining of old knowledge and thus
mitigating catastrophic forgetting.

5 Conclusion
We innovatively identify incremental sharing, characterized by
shared words and characters. Building upon this observation, we
propose HAMMER, a replay-based hierarchical multi-label learning
framework for MLTR. A knowledge analysis is designed to deter-
mine the shared knowledge. Additionally, we introduce a hierarchi-
cal language evaluation to guide specific recognizers to prediction.
Extensive experiments demonstrate the superiority of HAMMER.
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